

UNIVERSITÀ DEGLI STUDI DI MILANO

Study and optimization of a magnetic field quality measurement system for the characterization of superconducting accelerator magnets Analysis of Critical Aspects

Samuele Mariotto

Physics Department First Year PhD Workshop Presentation

9 October 2018, Milan

Outline

1 [Introduction](#page-2-0)

- **•** [Superconductivity](#page-2-0)
- [HL-LHC upgrade](#page-6-0)
- **[Magix Project](#page-12-0)**

² [Magnetic Field Measurements](#page-17-0)

- [2D Magnetic Field Map](#page-17-0)
- **[Measurements Analysis](#page-21-0)**
- [Experimental Results](#page-26-0)
- 3 [Quench Analysis](#page-30-0)
	- [What is quench?](#page-30-0)
	- [HO Superferric Magnets](#page-35-0)
	- [Round Coil Superferric Magnet](#page-41-0)

4 [Conclusions and Perspectives](#page-44-0)

Superconductivity

Heike Kamerlingh Onnes

- 1908: He reaches 4.2 K and lowered at 1.8 K
- 1911: Discovery of Superconductivity in Mercury
- 1913: Nobel Prize in Physics "for his investigations on the properties of matter at low temperatures which led, inter alia, to the production of liquid helium".

-
-

[Introduction](#page-2-0) [Magnetic Field Measurements](#page-17-0) **[Conclusions and Perspectives](#page-44-0)** [Quench Analysis](#page-30-0) **Conclusions and Perspectives**

Superconductivity

Heike Kamerlingh Onnes

- 1908: He reaches 4.2 K and lowered at 1.8 K
- 1911: Discovery of Superconductivity in Mercury
- 1913: Nobel Prize in Physics "for his investigations on the properties of matter at low temperatures which led, inter alia, to the production of liquid helium".

Theory

- Ginzburg-Landau Theory: Describe properties of superconductors. Derived from thermodynamics.
-

Superconductivity

Heike Kamerlingh Onnes

- 1908: He reaches 4.2 K and lowered at 1.8 K
- 1911: Discovery of Superconductivity in Mercury
- 1913: Nobel Prize in Physics "for his investigations on the properties of matter at low temperatures which led, inter alia, to the production of liquid helium".

Theory

- Ginzburg-Landau Theory: Describe properties of superconductors. Derived from thermodynamics.
- Bardeen-Cooper-Schrieffer (BCS): derive from Quantum Mechanics. Describe why materials are superconductors.

Superconductivity

Heike Kamerlingh Onnes

- 1908: He reaches 4.2 K and lowered at 1.8 K
- 1911: Discovery of Superconductivity in Mercury
- 1913: Nobel Prize in Physics "for his investigations on the properties of matter at low temperatures which led, inter alia, to the production of liquid helium".

Theory

- Ginzburg-Landau Theory: Describe properties of superconductors. Derived from thermodynamics.
- Bardeen-Cooper-Schrieffer (BCS): derive from Quantum Mechanics. Describe why materials are superconductors.
- New superconducting materials: LTS, HTS,

Fe-based, Cuprated ecc... $\qquad \qquad \text{NbTi: } T_c = 9.2 \text{ K, Nb}_3$ Sn: $T_c = 18.3 \text{ K}$ MgB_2 : $T_c = 42 K$

-
-
-
-

10 times the nominal value of Luminosity (up to \Longrightarrow 3000 fb⁻¹ over 12 years)

-
-
-

- 10 times the nominal value of Luminosity (up to \implies 3000 fb^{-1} over 12 years)
- \dagger New Low- β insertion region
-
-

- 10 times the nominal value of Luminosity (up to \implies 3000 fb^{-1} over 12 years)
- New Low- β insertion region
- † Cryogenics and Collimation
-

- 10 times the nominal value of Luminosity (up to \Longrightarrow 3000 fb⁻¹ over 12 years)
- New Low- β insertion region
- † Cryogenics and Collimation
- Superconductive Links and Crab Cavities

.
$$
. \text{uminosity: } L = \frac{N_1 N_2 f N_b}{4 \pi \sigma_x \sigma_y}
$$

- 10 times the nominal value of Luminosity (up to \Longrightarrow 3000 fb⁻¹ over 12 years)
- New Low- β insertion region
- † Cryogenics and Collimation
- Superconductive Links and Crab Cavities

$$
Luminosity: L = \frac{N_1 N_2 f N_b}{4 \pi \sigma_x \sigma_y}
$$

† New and more powerful Superconductive magnets for bending and focusing of the beam

MAGIX project

† 54 High Order Corrector Magnets

- \dagger 1 MgB₂ magnet
-

-
-

INFN CHILLU_M

MAGIX project

- † 54 High Order Corrector Magnets
- \dagger 1 MgB₂ magnet
- † 2 New Test Station ⇒ Multiple Magnetic Field Measurement

-
-
-

-
-
-

INFN הרה".
הור

Mathematic

MAGIX project

- † 54 High Order Corrector Magnets
- \dagger 1 MgB₂ magnet
- † 2 New Test Station ⇒ Multiple Magnetic Field Measurement

Correlation between Field Quality at room and cryogenic tempreratures

-
-
-

-
-
-

INFN

Mathematic

MAGIX project

- † 54 High Order Corrector Magnets
- \dagger 1 MgB₂ magnet
- † 2 New Test Station ⇒ Multiple Magnetic Field Measurement

Correlation between Field Quality at room and cryogenic tempreratures

PRO:

- † Few Test Sessions
- † Unique design of measurement's shaft
- Unique Data Acquisition setup

-
-
-

INFN

Mathematic

MAGIX project

- † 54 High Order Corrector Magnets
- \dagger 1 MgB₂ magnet
- † 2 New Test Station ⇒ Multiple Magnetic Field Measurement

Correlation between Field Quality at room and cryogenic tempreratures

PRO:

- † Few Test Sessions
- Unique design of measurement's shaft
- Unique Data Acquisition setup

PROBLEMS:

- † Magnets Cross talking
- † Residual Magnetization effect
- More Time required for Cool Down

2D Magnetic Field Map

 $\nabla \times \mathbf{H} = 0 \Rightarrow \nabla \times \mathbf{B} = 0 \Rightarrow \mathbf{B} = -\nabla \Phi_m$

 $\nabla \cdot \mathbf{B} = 0 \Rightarrow \nabla^2 \Phi_m = 0$

- † Invariant longitudinal magnetic field
- \dagger Null integrated B_z component along the rotational axis.

Defining:
$$
B(z) = B_y(x, y) + iBx(x, y)
$$

Analytic Function

$$
\mathbf{B(z)} = \sum_{n=1}^{\infty} C_n \left(\frac{z}{R_{ref}}\right)^{n-1}
$$

$$
\mathbf{B(z)} = \sum_{n=1}^{\infty} \left[B_n + iA_n\right] \left(\frac{z}{R_{ref}}\right)^{n-1}
$$

$$
b_n = Re\left[\frac{C_n}{B_{ref}}\right] = \frac{B_n}{B_{ref}}
$$

$$
a_n = Im\left[\frac{C_n}{B_{ref}}\right] = \frac{A_n}{B_{ref}}
$$

Hillym

INFN

Data Acquisition Issues

Magnets Fringe Field

Hillyon

INFN

Data Acquisition Issues

Magnets Fringe Field

† Magnets Cross Talking \Rightarrow d_{min}

Hill Un

INFN

Data Acquisition Issues

Magnets Fringe Field

† Magnets Cross Talking \Rightarrow d_{min}

† Shaft Alignment

† Shaft Calibration Signals

-
-

- † Shaft Calibration Signals
- † Transfer Function
- -

- † Shaft Calibration Signals
- † Transfer Function
- † Magnetization Effects

$$
\Psi_n = \sum_{k=1}^{N} \psi_k e^{-2\pi i (n-1) \frac{(k-1)}{N}}
$$

- † Transfer Function
- † Magnetization Effects

Discrete Fourier transform (DFT)

$$
\Psi_n = \sum_{k=1}^{N} \psi_k e^{-2\pi i (n-1) \frac{(k-1)}{N}}
$$

 0.90

Experimental Signals

- † Shaft Calibration Signals
- † Transfer Function
- † Magnetization Effects

Discrete Fourier transform (DFT)

$$
\Psi_n = \sum_{k=1}^{N} \psi_k e^{-2\pi i (n-1) \frac{(k-1)}{N}}
$$

Requirements:

 $\mathsf{h} | \mathsf{b}_n | \leq 10$ units

Courtesy of Lucio Fiscarelli (CERN Magnetic Measurements Division)

-
-

Courtesy of Lucio Fiscarelli (CERN Magnetic Measurements Division)

-
-

Courtesy of Lucio Fiscarelli (CERN Magnetic Measurements Division)

Baseline features:

† Iron Magnetization effect

Courtesy of Lucio Fiscarelli (CERN Magnetic Measurements Division)

Baseline features:

- † Iron Magnetization effect
- † n=12 Lost Sensibility

Superconductor's Quench

Definition: Fast transition to the resistive and normal conductive state

-
-

Superconductor's Quench

Definition: Fast transition to the resistive and normal conductive state

LHC damage (2008)

Solution: † FAST DISCHARGE

Quench Protection System (QPS)

Superconductor's Quench

Definition: Fast transition to the resistive and normal conductive state

LHC damage (2008)

Solution: † FAST DISCHARGE

Quench Protection System (QPS)

Quench Heaters

Superconductor's Quench

Definition: Fast transition to the resistive and normal conductive state

LHC damage (2008)

Solution: † FAST DISCHARGE

Quench Protection System (QPS)

- Quench Heaters
- Dumping Resistance

Superconductor's Quench

Definition: Fast transition to the resistive and normal conductive state

LHC damage (2008)

Solution: † FAST DISCHARGE

Quench Protection System (QPS)

- Quench Heaters
- Dumping Resistance

† CLIQ

Measured quench in Decapole's prototype

Measured quench in Decapole's prototype

Measured quench in Decapole's prototype

† No supposed degradation of the filaments † Well described by Simulation

Measured quench in Decapole's prototype

† No supposed degradation of the filaments † Well described by Simulation

† Application to all multipole's orders

Measured quench in Decapole's prototype

† No supposed degradation of the filaments † Well described by Simulation

† Application to all multipole's orders

Measured quench in Decapole's prototype

† No supposed degradation of the filaments † Well described by Simulation

† Application to all multipole's orders

All magnets can be safely protected

RCSM

¹I. F. Malyshev. Patent for a multipole magnetic lens. 1973 Patent 1 689 890/26-25, Oct.12, n 41

 $2V$. Kashikhin, "A novel design of iron dominated superconducting multipole magnets with circular coils," IEEE Trans. Appl. Supercond., vol. 20, no. 3, pp. 196–199, Jun. 2010

RCSM

- † Can create all multipole orders
- † Suitable to strain sensitive SC

¹I. F. Malyshev. Patent for a multipole magnetic lens. 1973 Patent 1 689 890/26-25, Oct.12, n 41

 $2V$. Kashikhin, "A novel design of iron dominated superconducting multipole magnets with circular coils," IEEE Trans. Appl. Supercond., vol. 20, no. 3, pp. 196–199, Jun. 2010

RCSM

- † Can create all multipole orders
- † Suitable to strain sensitive SC

 \dagger 1^{st} Coil of the Demonstrator: Assembled and Tested

- † Well described considering also Aluminum Coupling
- † Next Step: build of Iron Yoke

¹I. F. Malyshev. Patent for a multipole magnetic lens. 1973 Patent 1 689 890/26-25, Oct.12, n 41

 $2V$. Kashikhin, "A novel design of iron dominated superconducting multipole magnets with circular coils," IEEE Trans. Appl. Supercond., vol. 20, no. 3, pp. 196–199, Jun. 2010

-
-
-

-
-
-
-

† Cryogenic Measurements of Sextupole, Octupole and Decapole: DONE.

-
-
-
-

- † Cryogenic Measurements of Sextupole, Octupole and Decapole: DONE.
- † Study of Cross Talking has been performed and will have impact on shaft design
-

-
-
-
-

INFN HILL

- † Cryogenic Measurements of Sextupole, Octupole and Decapole: DONE.
- Study of Cross Talking has been performed and will have impact on shaft design
- † Analysis of Iron and superconductr magnetization effects at cryogenic temperature

-
-
-
-

INFN ∫HIrnu

- † Cryogenic Measurements of Sextupole, Octupole and Decapole: DONE.
- † Study of Cross Talking has been performed and will have impact on shaft design
- † Analysis of Iron and superconductr magnetization effects at cryogenic temperature

- \dagger Dodecapole Prototype is being tested right now $(8^{th}$ October 12^{th} October 2018) Quadrupole Prototype's coils are being assembled.
-
-
-

INFN ریا‼ای

- † Cryogenic Measurements of Sextupole, Octupole and Decapole: DONE.
- † Study of Cross Talking has been performed and will have impact on shaft design
- † Analysis of Iron and superconductr magnetization effects at cryogenic temperature

- \dagger Dodecapole Prototype is being tested right now $(8^{th}$ October 12^{th} October 2018) Quadrupole Prototype's coils are being assembled.
- † Design of cryogenic test station is on going
-
-

INFN ∕ ⊞l

- † Cryogenic Measurements of Sextupole, Octupole and Decapole: DONE.
- † Study of Cross Talking has been performed and will have impact on shaft design
- † Analysis of Iron and superconductr magnetization effects at cryogenic temperature

- \dagger Dodecapole Prototype is being tested right now $(8^{th}$ October 12^{th} October 2018) Quadrupole Prototype's coils are being assembled.
- † Design of cryogenic test station is on going
- Simulations of Magnets' deformations
- † Parametrization of the Field Quality as function of temperature

INFN

Conclusions and Perspectives

- † Cryogenic Measurements of Sextupole, Octupole and Decapole: DONE.
- † Study of Cross Talking has been performed and will have impact on shaft design
- † Analysis of Iron and superconductr magnetization effects at cryogenic temperature

- \dagger Dodecapole Prototype is being tested right now $(8^{th}$ October 12^{th} October 2018) Quadrupole Prototype's coils are being assembled.
- † Design of cryogenic test station is on going
- Simulations of Magnets' deformations
- † Parametrization of the Field Quality as function of temperature

Thank you for your attention

Superconducting MgB₂

Features

- † Discovered in 2001 by group of professor Akimitsu
- \dagger Critical Temperature of 39 K
- Two gap of energy: Band π and σ $\Delta_{\pi} = 2.2 \ meV$ and $\Delta_{\sigma} = 1.7 \ meV$
- [†] Coherence lengths: $51 \ nm$ and $13 \ nm$
- London penetration depths: $33.6 \ nm$ and 47.8 nm

Magnetic Measurements Shaft

Magnetic Measurements Shaft

Courtesy of Lucio Fiscarelli (CERN Magnetic Measurements Division)