

Study and optimization of a magnetic field quality measurement system for the characterization of superconducting accelerator magnets Analysis of Critical Aspects

Samuele Mariotto

Physics Department First Year PhD Workshop Presentation

9 October 2018, Milan

Outline

Introduction

- Superconductivity
- HL-LHC upgrade
- Magix Project

2 Magnetic Field Measurements

- 2D Magnetic Field Map
- Measurements Analysis
- Experimental Results
- Quench Analysis
 - What is quench?
 - HO Superferric Magnets
 - Round Coil Superferric Magnet

4 Conclusions and Perspectives

Quench Analysis

Conclusions and Perspectives

Superconductivity

Heike Kamerlingh Onnes

- \dagger 1908: He reaches 4.2~K and lowered at 1.8~K
- † 1911: Discovery of Superconductivity in Mercury
- † 1913: Nobel Prize in Physics "for his investigations on the properties of matter at low temperatures which led, inter alia, to the production of liquid helium".

Theory

- *Ginzburg-Landau Theory*: Describe **properties of superconductors**. Derived from thermodynamics.
- † Bardeen-Cooper-Schrieffer (BCS): derive from Quantum Mechanics. Describe why materials are superconductors.

New superconducting materials: LTS, HTS, Fe-based, Cuprated ecc...

NbTi: $T_c = 9.2 \ K$, Nb₃Sn: $T_c = 18.3 \ K$ MgB₂: $T_c = 42 \ K$

Quench Analysis

Conclusions and Perspectives

Superconductivity

Heike Kamerlingh Onnes

- \dagger 1908: He reaches 4.2~K and lowered at 1.8~K
- † 1911: Discovery of Superconductivity in Mercury
- † 1913: Nobel Prize in Physics "for his investigations on the properties of matter at low temperatures which led, inter alia, to the production of liquid helium".

Theory

- † *Ginzburg-Landau Theory:* Describe **properties of superconductors**. Derived from thermodynamics.
- Bardeen-Cooper-Schrieffer (BCS): derive from Quantum Mechanics. Describe why materials are superconductors.

New superconducting materials: LTS, HTS, Fe-based, Cuprated ecc...

NbTi: $T_c = 9.2 K$, Nb₃Sn: $T_c = 18.3 K$ MgB₂: $T_c = 42 K$

Samuele Mariotto

Quench Analysis

Conclusions and Perspectives

Superconductivity

Heike Kamerlingh Onnes

- \dagger 1908: He reaches 4.2~K and lowered at 1.8~K
- † 1911: Discovery of Superconductivity in Mercury
- † 1913: Nobel Prize in Physics "for his investigations on the properties of matter at low temperatures which led, inter alia, to the production of liquid helium".

Theory

- † *Ginzburg-Landau Theory:* Describe **properties of superconductors**. Derived from thermodynamics.
- Bardeen-Cooper-Schrieffer (BCS): derive from Quantum Mechanics. Describe why materials are superconductors.

New superconducting materials: LTS, HTS, Fe-based, Cuprated ecc...

NbTi: $T_c = 9.2 K$, Nb₃Sn: $T_c = 18.3 K$ MgB₂: $T_c = 42 K$

Samuele Mariotto

Quench Analysis

Conclusions and Perspectives

Superconductivity

Heike Kamerlingh Onnes

- \dagger 1908: He reaches 4.2~K and lowered at 1.8~K
- † 1911: Discovery of Superconductivity in Mercury
- † 1913: Nobel Prize in Physics "for his investigations on the properties of matter at low temperatures which led, inter alia, to the production of liquid helium".

Theory

- † *Ginzburg-Landau Theory:* Describe **properties of superconductors**. Derived from thermodynamics.
- Bardeen-Cooper-Schrieffer (BCS): derive from Quantum Mechanics. Describe why materials are superconductors.
- New superconducting materials: LTS, HTS, Fe-based, Cuprated ecc...

NbTi: $T_c = 9.2 K$, Nb₃Sn: $T_c = 18.3 K$ MgB₂: $T_c = 42 K$

- † 10 times the nominal value of Luminosity (up to $\implies 3000 \ fb^{-1}$ over 12 years)
- † New Low- β insertion region
- † Cryogenics and Collimation
- † Superconductive Links and Crab Cavities

Luminosity: $L = \frac{N_1 N_2 f N_2}{4 \pi \sigma_s \sigma_y}$

[9] New and more powerful Superconductive magnetic for bending and focusing of the beam

- † 10 times the nominal value of Luminosity (up to $\implies 3000 \ fb^{-1}$ over 12 years)
- † New Low- β insertion region
- † Cryogenics and Collimation
- † Superconductive Links and Crab Cavities

- † 10 times the nominal value of Luminosity (up to $\implies 3000 \ fb^{-1}$ over 12 years)
- \dagger New Low- β insertion region
- † Cryogenics and Collimation
- † Superconductive Links and Crab Cavities

New and more powerful Superconductive magnetic for bandling and docasing of the board

- † 10 times the nominal value of Luminosity (up to $\implies 3000 \ fb^{-1}$ over 12 years)
- \dagger New Low- β insertion region
- † Cryogenics and Collimation
- † Superconductive Links and Crab Cavities

 $\text{uminosity: } L = \frac{N_1 N_2 f N_b}{4 \pi \sigma_x \sigma_y}$

 New and more powerful Superconductive magnets for bending and focusing of the beam

- † 10 times the nominal value of Luminosity (up to $\implies 3000 \ fb^{-1}$ over 12 years)
- † New Low- β insertion region
- † Cryogenics and Collimation
- † Superconductive Links and Crab Cavities

uminosity: $L = \frac{N_1 N_2 f N_b}{4\pi \sigma_x \sigma_y}$

† New and more powerful Superconductive magnets for bending and focusing of the beam

- † 10 times the nominal value of Luminosity (up to $\implies 3000 \ fb^{-1}$ over 12 years)
- † New Low- β insertion region
- † Cryogenics and Collimation
- † Superconductive Links and Crab Cavities

uminosity:
$$L = \frac{N_1 N_2 f N_b}{4\pi \sigma_x \sigma_y}$$

† New and more powerful Superconductive magnets for bending and focusing of the beam

l

Introduction

Magnetic Field Measurements

Quench Analysis

MAGIX project

† 54 High Order Corrector Magnets

- $\dagger 1 \text{ MgB}_2 \text{ magnet}$
- \dagger 2 New Test Station \Rightarrow Multiple Magnetic Field Measurement

Correlation between Field Quality at room and cryogenic tempreratures

PRO

- 1 Few Test Sessions
- Unique design of measurement's shaft:
- 1 Unique Data Acquisition setup

PROBLEMS:

- † Magnets Cross talking
- Residual Magnetization effect:
- † More Time required for Cool Down

Introduction

Magnetic Field Measurements

Quench Analysis

- † 54 High Order Corrector Magnets
- \dagger 1 MgB₂ magnet
- \dagger 2 New Test Station \Rightarrow Multiple Magnetic Field Measurement

Correlation between Field Quality at room and cryogenic tempreratures

PRO:

- Few Test Sessions
- | Unique design of measurement's shaft
- † Unique Data Acquisition setup

PROBLEMS

- 1 Magnets Cross talking
- | Residual Magnetization effect:
- | More Time required for Cool Down

Introduction

Magnetic Field Measurements

Quench Analysis

MAGIX project

- 54 High Order Corrector Magnets ŧ
- 1 MgB₂ magnet t
- 2 New Test Station \Rightarrow Multiple Magnetic Field Measurement

Correlation between Field Quality at room and cryogenic tempreratures

Quench Analysis

MAGIX project

- † 54 High Order Corrector Magnets
- \dagger 1 MgB₂ magnet
- \dagger 2 New Test Station \Rightarrow Multiple Magnetic Field Measurement

Correlation between Field Quality at room and cryogenic tempreratures

PRO:

- † Few Test Sessions
- † Unique design of measurement's shaft
- † Unique Data Acquisition setup

PROBLEMS:

- † Magnets Cross talking
- † Residual Magnetization effect
- † More Time required for Cool Down

Quench Analysis

MAGIX project

- † 54 High Order Corrector Magnets
- $\dagger 1 \text{ MgB}_2 \text{ magnet}$
- \dagger 2 New Test Station \Rightarrow Multiple Magnetic Field Measurement

Correlation between Field Quality at room and cryogenic tempreratures

PRO:

- † Few Test Sessions
- † Unique design of measurement's shaft
- † Unique Data Acquisition setup

PROBLEMS:

- † Magnets Cross talking
- † Residual Magnetization effect
- † More Time required for Cool Down

2D Magnetic Field Map

$$\nabla \times \mathbf{H} = 0 \Rightarrow \nabla \times \mathbf{B} = 0 \Rightarrow \mathbf{B} = -\nabla \Phi_m$$

$$\nabla\cdot\mathbf{B}=0\Rightarrow\nabla^2\Phi_m=0$$

- † Invariant longitudinal magnetic field
- ^{\dagger} Null integrated B_z component along the rotational axis.

Defining:
$$\mathbf{B}(\mathbf{z}) = B_y(x, y) + iBx(x, y)$$

Analytic Function

$$\mathbf{B}(\mathbf{z}) = \sum_{n=1}^{\infty} C_n \left(\frac{z}{R_{ref}}\right)^{n-1}$$
$$\mathbf{B}(\mathbf{z}) = \sum_{n=1}^{\infty} [B_n + iA_n] \left(\frac{z}{R_{ref}}\right)^{n-1}$$
$$b_n = Re\left[\frac{C_n}{B_{ref}}\right] = \frac{B_n}{B_{ref}}$$
$$a_n = Im\left[\frac{C_n}{B_{ref}}\right] = \frac{A_n}{B_{ref}}$$

Quench Analysis

Conclusions and Perspectives

HILUN

INFŇ

Data Acquisition Issues

Magnets Fringe Field

† Magnets Cross Talking $\Rightarrow d_{min}$

† Shaft Alignment

Quench Analysis

Conclusions and Perspectives

HILUN

INFŇ

Data Acquisition Issues

Magnets Fringe Field

 \dagger Magnets Cross Talking $\Rightarrow d_{min}$

1^{st} Magnet's Order	2^{nd} Magnet's Order	Distance [cm]
6^{th} order	6^{th} order	50
4^{th} order	12^{th} order	125

† Shaft Alignment

Quench Analysis

Conclusions and Perspectives

HILUN

INFŇ

Data Acquisition Issues

Magnets Fringe Field

 \dagger Magnets Cross Talking $\Rightarrow d_{min}$

1^{st} Magnet's Order	2^{nd} Magnet's Order	Distance [cm]
6^{th} order	6^{th} order	50
4^{th} order	12^{th} order	125

† Shaft Alignment

† Shaft Calibration Signals

- Transfer Function
- Magnetization Effects
 - Discrete Fourier transform (DET)
 - $w_n = \sum_{k=1}^N w_k e^{-2kn(n-1)\frac{k+2}{N}}$

- † Shaft Calibration Signals
- † Transfer Function
- Magnetization Effects
 - Discrete Fourier transform (DFT)

$$\Psi_n = \sum_{k=1}^N \psi_k e^{-2\pi i (n-1)\frac{(k-1)}{N}}$$

- † Shaft Calibration Signals
- † Transfer Function
- † Magnetization Effects

Discrete Fourier transform (DFT)

$$\Psi_n = \sum_{k=1}^N \psi_k e^{-2\pi i (n-1)\frac{(k-1)}{N}}$$

Requirements: $|b_n| \le 10$ units

- † Shaft Calibration Signals
- Transfer Function
- † Magnetization Effects

Discrete Fourier transform (DFT)

$$\Psi_n = \sum_{k=1}^{N} \psi_k e^{-2\pi i (n-1)\frac{(k-1)}{N}}$$

Requirements: $|b_n| \le 10$ units

- † Shaft Calibration Signals
- Transfer Function
- † Magnetization Effects

Discrete Fourier transform (DFT)

$$\Psi_n = \sum_{k=1}^{N} \psi_k e^{-2\pi i (n-1)\frac{(k-1)}{N}}$$

Requirements:

 $\dagger |\mathsf{b}_n| \leq 10$ units

Courtesy of Lucio Fiscarelli (CERN Magnetic Measurements Division)

Octupole's Multipoles

Baseline features:

- † Iron Magnetization effect
- n=12 Lost Sensibility

Courtesy of Lucio Fiscarelli (CERN Magnetic Measurements Division)

			Oct	upc	le's	Mul	tipo	les			
Order	5	6	7	8	9	10	11	12	13	14	15
b_n	3	-2	1	0	-1	-2	0	6	-8	4	0
a_n	-5	0	-1	0	0	-5	0	19	14	2	-1
σ_{b_n}	1	1	1	2	2	4	26	14	16	6	4
σ_{a_n}	0	0	1	1	1	3	27	15	11	5	3

Baseline features:

- Iron Magnetization effect
- n=12 Lost Sensibility

Courtesy of Lucio Fiscarelli (CERN Magnetic Measurements Division)

			Oct	upc	ole's	Mul	tipo	les			
r	5	6	7	8	9	10	11	12	13	14	15
	3	-2	1	0	-1	-2	0	6	-8	4	0
	-5	0	-1	0	0	-5	0	19	14	2	-1
	1	1	1	2	2	4	26	14	16	6	4

3 27 15 11 5 3

Baseline features:

† Iron Magnetization effect

† n=12 Lost Sensibility

Orde

 b_n a_n σ_{b_n}

 σ_{a_n}

0 0

Courtesy of Lucio Fiscarelli (CERN Magnetic Measurements Division)

			Oct	upo	le's	Mul	tipo	les			
r	5	6	7	8	9	10	11	12	13	14	
	3	-2	1	0	-1	-2	0	6	-8	4	
	-5	0	-1	0	0	-5	0	19	14	2	
	1	1	1	2	2	4	26	14	16	6	

3 27

15 11 5

Baseline features:

- † Iron Magnetization effect
- † n=12 Lost Sensibility

0

0

Orde

 b_n

 $a_n \sigma_{b_n}$

 σ_{a_n}

15

0 -1 4

3

Quench Analysis

Conclusions and Perspectives

Superconductor's Quench

Definition: Fast transition to the resistive and normal conductive state

Solution: **FAST DISCHARGE**

Quench Protection System (QPS)

- † Quench Heaters
- † Dumping Resistance

CLIQ

Samuele Mariotto

First Year PhD Workshop

Superconductor's Quench

Definition: Fast transition to the resistive and normal conductive state

LHC damage (2008)

Solution: † FAST DISCHARGE

Quench Protection System (QPS)

- † Quench Heaters
- Dumping Resistance

CLIQ

Superconductor's Quench

Definition: Fast transition to the resistive and normal conductive state

LHC damage (2008)

Solution: † FAST DISCHARGE

Quench Protection System (QPS)

† Quench Heaters

Dumping Resistance

CLIQ

Superconductor's Quench

Definition: Fast transition to the resistive and normal conductive state

LHC damage (2008)

Solution: † FAST DISCHARGE

Quench Protection System (QPS)

- † Quench Heaters
- Dumping Resistance

CLIQ

Superconductor's Quench

Definition: Fast transition to the resistive and normal conductive state

LHC damage (2008)

Solution: † FAST DISCHARGE

Quench Protection System (QPS)

- † Quench Heaters
- Dumping Resistance
- CLIQ

Measured quench in Decapole's prototype

† No supposed degradation of the filaments† Well described by Simulation

† Application to all multipole's orders

Measured quench in Decapole's prototype

† Well described by Simulation

† Application to all multipole's orders

Measured quench in Decapole's prototype

- † No supposed degradation of the filaments
- † Well described by Simulation

† Application to all multipole's orders

Measured quench in Decapole's prototype

- † No supposed degradation of the filaments
- † Well described by Simulation

† Application to all multipole's orders

All magnets can be safely protected

Samuele Mariotto

Measured quench in Decapole's prototype

† No supposed degradation of the filaments† Well described by Simulation

† Application to all multipole's orders

Order	$ T_{max} [K]$	V_{max} [V]	R_{dump}
4P	122	216	YES
6P	120	70	NO
8P	140	58	NO
10P	127	57	NO
12P	143	267	NO
12Ps	125	65	NO

Measured quench in Decapole's prototype

† No supposed degradation of the filaments† Well described by Simulation

† Application to all multipole's orders

Order	$\mid T_{max} [K]$	V_{max} [V]	R_{dump}
4P	122	216	YES
6P	120	70	NO
8P	140	58	NO
10P	127	57	NO
12P	143	267	NO
12Ps	125	65	NO

Quench Analysis

Conclusions and Perspectives

RCSM

† Can create all multipole orders† Suitable to strain sensitive SC

 $\dagger 1^{st}$ Coil of the Demonstrator: Assembled and Tested

† Well described considering also Aluminum Coupling

† Next Step: build of Iron Yoke

¹I. F. Malyshev. Patent for a multipole magnetic lens. 1973 Patent 1 689 890/26-25, Oct.12, n 41

 $^{^{2}}$ V. Kashikhin, "A novel design of iron dominated superconducting multipole magnets with circular coils," IEEE Trans. Appl. Supercond., vol. 20, no. 3, pp. 196–199, Jun. 2010

Quench Analysis

Conclusions and Perspectives

RCSM

- † Can create all multipole orders
- Suitable to strain sensitive SC

 $\dagger 1^{st}$ Coil of the Demonstrator: Assembled and Tested

- † Well described considering also Aluminum Coupling
- † Next Step: build of Iron Yoke

¹I. F. Malyshev. Patent for a multipole magnetic lens. 1973 Patent 1 689 890/26-25, Oct.12, n 41

 $^{^{2}}$ V. Kashikhin, "A novel design of iron dominated superconducting multipole magnets with circular coils," IEEE Trans. Appl. Supercond., vol. 20, no. 3, pp. 196–199, Jun. 2010

RCSM

- † Can create all multipole orders
- Suitable to strain sensitive SC

 $\dagger \ 1^{st}$ Coil of the Demonstrator: Assembled and Tested

- † Well described considering also Aluminum Coupling
- † Next Step: build of Iron Yoke

¹I. F. Malyshev. Patent for a multipole magnetic lens. 1973 Patent 1 689 890/26-25, Oct.12, n 41

 $^{^{2}}$ V. Kashikhin, "A novel design of iron dominated superconducting multipole magnets with circular coils," IEEE Trans. Appl. Supercond., vol. 20, no. 3, pp. 196–199, Jun. 2010

- † Cryogenic Measurements of Sextupole, Octupole and Decapole: DONE.
- † Study of Cross Talking has been performed and will have impact on shaft design
- † Analysis of Iron and superconductr magnetization effects at cryogenic temperature

- † Dodecapole Prototype is being tested right now (8th October 12th October 2018) Quadrupole Prototype's coils are being assembled.
- † Design of cryogenic test station is on going
- † Simulations of Magnets' deformations
- † Parametrization of the Field Quality as function of temperature

† Cryogenic Measurements of Sextupole, Octupole and Decapole: DONE.

- † Study of Cross Talking has been performed and will have impact on shaft design
- † Analysis of Iron and superconductr magnetization effects at cryogenic temperature

- † Dodecapole Prototype is being tested right now (8th October 12th October 2018) Quadrupole Prototype's coils are being assembled.
- † Design of cryogenic test station is on going
- † Simulations of Magnets' deformations
- † Parametrization of the Field Quality as function of temperature

- † Cryogenic Measurements of Sextupole, Octupole and Decapole: DONE.
- † Study of Cross Talking has been performed and will have impact on shaft design
- † Analysis of Iron and superconductr magnetization effects at cryogenic temperature

- † Dodecapole Prototype is being tested right now (8th October 12th October 2018)
 Quadrupole Prototype's coils are being assembled.
- † Design of cryogenic test station is on going
- † Simulations of Magnets' deformations
- † Parametrization of the Field Quality as function of temperature

- † Cryogenic Measurements of Sextupole, Octupole and Decapole: DONE.
- † Study of Cross Talking has been performed and will have impact on shaft design
- † Analysis of Iron and superconductr magnetization effects at cryogenic temperature

- † Dodecapole Prototype is being tested right now (8th October 12th October 2018) Quadrupole Prototype's coils are being assembled.
- † Design of cryogenic test station is on going
- † Simulations of Magnets' deformations
- † Parametrization of the Field Quality as function of temperature

- † Cryogenic Measurements of Sextupole, Octupole and Decapole: DONE.
- † Study of Cross Talking has been performed and will have impact on shaft design
- † Analysis of Iron and superconductr magnetization effects at cryogenic temperature

- \dagger Dodecapole Prototype is being tested right now (8th October 12th October 2018) Quadrupole Prototype's coils are being assembled.
- Design of cryogenic test station is on going
- Simulations of Magnets' deformations
- † Parametrization of the Field Quality as function of temperature

- † Cryogenic Measurements of Sextupole, Octupole and Decapole: DONE.
- † Study of Cross Talking has been performed and will have impact on shaft design
- † Analysis of Iron and superconductr magnetization effects at cryogenic temperature

- \dagger Dodecapole Prototype is being tested right now (8th October 12th October 2018) Quadrupole Prototype's coils are being assembled.
- † Design of cryogenic test station is on going
- Simulations of Magnets' deformations
- † Parametrization of the Field Quality as function of temperature

- † Cryogenic Measurements of Sextupole, Octupole and Decapole: DONE.
- † Study of Cross Talking has been performed and will have impact on shaft design
- † Analysis of Iron and superconductr magnetization effects at cryogenic temperature

- \dagger Dodecapole Prototype is being tested right now (8th October 12th October 2018) Quadrupole Prototype's coils are being assembled.
- † Design of cryogenic test station is on going
- † Simulations of Magnets' deformations
- † Parametrization of the Field Quality as function of temperature

- † Cryogenic Measurements of Sextupole, Octupole and Decapole: DONE.
- † Study of Cross Talking has been performed and will have impact on shaft design
- † Analysis of Iron and superconductr magnetization effects at cryogenic temperature

- \dagger Dodecapole Prototype is being tested right now (8th October 12th October 2018) Quadrupole Prototype's coils are being assembled.
- † Design of cryogenic test station is on going
- † Simulations of Magnets' deformations
- † Parametrization of the Field Quality as function of temperature

${\sf Superconducting}\ {\sf MgB}_2$

Features

- † Discovered in 2001 by group of professor Akimitsu
- \dagger Critical Temperature of 39 K
- Two gap of energy: Band π and σ $\Delta_{\pi} = 2.2 \ meV$ and $\Delta_{\sigma} = 1.7 \ meV$
- \dagger Coherence lengths: $51 \ nm$ and $13 \ nm$
- \dagger London penetration depths: 33.6 nm and 47.8 nm

Magnetic Measurements Shaft

Magnetic Measurements Shaft

Courtesy of Lucio Fiscarelli (CERN Magnetic Measurements Division)