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Introduction
The Standard Method

Scattering Of Particles

Cross Sections and Rates →
dσ
dΩ = (2π)4mimf

pf
pi
|Ai ,f |2

Ai ,f = 〈αin|βout〉 α, β = (pµ, h, c)
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Introduction
The Standard Method

Feynman Diagrams

Lagrangian

L =
∫
d4xL(φ, ∂µφ), e.g. L =

∫
d4x ∂µφ∂

µφ+ g3φ
3 + g4φ

4 + ...

g3 → g4 →
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Introduction
The Standard Method

Cumbersome computation!

Feynman Expansion

An =
∑

Γ∈Graphs Value(Γ)

IR and UV infinities: need to renormalize

Factorial growth of the number of diagrams ∼ n!
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Introduction
The Standard Method

Unnecessarily Cumbersome Computation?

A[g−1 g−2 → g+
3 g+

4 ...g
+
n ] = 〈12〉4

〈12〉〈23〉...〈n1〉

〈ij〉 ∼ (pi + pj)
2
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On-Shell vs Off-Shell
On-Shell building blocks
BCFW Recursion Relations

Particles and Fields

Particles: Experimentally accesible quantum states, well
defined Mass, Charges and Free Propagation

Fields: Tools used to construct Lorentz Invariant dynamics:
φ(x) =

∫
d3−→p exp(ipµxµ)u(−→p )â(−→p )

→ Û(Λ)(φ(x)) = S(Λ)(φ(Λ−1x)), Λ ∈ SO(1, 3)
→ L =

∫
d4x L(∂µφ, φ) is invariant.

Problem: No massless vector field (e.g. Aµ in QED)
Û(Λ)(Aµ(x)) = ΛµνAν(Λ−1x) + ∂µχ

Solution: Coupling with a conserved current Jµ

L→ L +
∫
Jµ∂µχ = L−

∫
∂µJ

µχ = L
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Gauge redundancy

Particles know nothing about gauge freedom →
Scattering Amplitudes are gauge invariant
(Ward Identities pµA

µ = 0)

Fields transform with the gauge →
Feynman diagrams are not gauge invariant

Feynman Expansion

An =
∑

Γ∈Graphs Value(Γ) →
Complicate pattern of
cancellations among gauge
dependent terms!
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QED Compton Scattering

A4(f̄ +f −γ+γ−) = 2e2 〈24〉[q4|(−|1]〈1| − |3]〈3|)|q3〉[31]

〈13〉[13]〈q33〉[q44]
+

+ 2e2 〈2q3〉[3|(−|1]〈1| − |4]〈4|)|4〉[q41]

〈14〉[14]〈q33〉[q44]

= 2e2 〈24〉
〈13〉〈23〉
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Amplitudes as building blocks for Amplitudes

Gauge Invariant Expansion? An =
∑

gauge invariants GI

Amplitudes are natural invariant objects

Feynman diagrams suggest a way: Look at poles and residues
of Amplitudes
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Poles and Residues of Tree Amplitudes II

To sum up:

An(p) has a pole if P2
I = 0, PI =

∑
i∈I pi .

The residue is given by amplitudes with fewer legs:
Res An(p) = AnLAnR , nL + nR = n + 2.

Tempting Conjecture: An =
∑

I
AnL

AnR

P2
I

Not so easy: in general one gets spurious poles

A more refined strategy: Britto-Cachazo-Feng-Witten
recursion relations.
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BCFW Recursion Relations in a Nutshell

Goal

Exploit knowledge of singularity structure in a constructive way

Deform momenta pi (z) = pi + zri , z ∈ C, in such a way that
1 pi (z) are on-shell, i.e. pi (z)2 = 0
2 Satisfy momentum conservation

∑
i pi (z) = 0

3 Mandelstam invariants are linear in z : P2
I (z) = P2

I + zDI

Poles of An(z)
z :

z = 0 −−→
Res

An(0) = An

zI = −P2
I

DI
−−→
Res

An
zI

=
AnL

(zI )AnR
(zI )

P2
I

Use Cauchy theorem in CP1 : An =
∑ AnL

(zI )AnR
(zI )

P2
I
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BCFW in Action

Parke-Taylor formula

= 〈12〉4
〈12〉〈23〉...〈n1〉

Amplitudes beyond “Maximally Helicity Violating” order
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Beyond Tree Level

BCFW for the integrand∑
Graphs

∫
d4l →

∫
d4l

∑
Graphs

Unitarity Cuts
An,1 =∑

i di (box) +
∑

i ci (triangle) + sumibi (bubble) + rational

The Symbol, Cluster Algebras

QCD loop computations (Dixon)

Unexpected UV finiteness of N = 8 SUGRA (Bern, Carrasco,
Johansson)
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Two Puzzles from BCFW

Spurious Poles: Individual terms have spurious poles that
cancels in the sum.

Non trivial relations: Different deformation schemes →
relations among Gauge invariant objects.

The simplest example:
6-point NMHV amplitude in N = 4 Super Yang-Mills

A6[1, 2, 3, 4, 5, 6] = [3, 1, 6, 5, 4] + [3, 2, 1, 6, 5] + [3, 2, 1, 5, 4]

= [2, 3, 4, 6, 1] + [2, 3, 4, 5, 6] + [2, 4, 5, 6, 1]
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Kinematics in (Bosonized) Twistor Space

Kinematical Space Space-Time Bosonized Twistor Space

Variables pi ∈ R1,3 Zi ∈ CP4, 0 = (0, 0, 0, 0, 1)

Physical Poles (
∑j

a=i pa)2 = 0 〈0, i , i + 1, j , j + 1〉 = 0

[i , j , k, l ,m] := 1
4!

∫
d4ψ 〈i ,j ,k,l ,m〉4

〈0,i ,j ,k,l〉〈0,j ,k,l ,m〉〈0,k,l ,m,i〉〈0,l ,m,i ,j〉〈0,m,i ,j ,k〉

A6[1, 2, 3, 4, 5, 6] = [2, 3, 4, 6, 1] + [2, 3, 4, 5, 6] + [2, 4, 5, 6, 1]

[2, 3, 4, 6, 1]→ 〈0, 4, 6, 1, 2〉, 〈0, 2, 3, 4, 6〉

The Integrand is the volume of a 4-simplex in CP4, with
co-dimension 1 boundaries Zi ·W = 0! (Hodges)
The Amplitude is the volume of a polytope.
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Triangles and Polytopes in the Plane

Zi ∈ CP2, i = 1, 2, 3 →
1, 2, 3 = {W |Z1,2,3 ·W = 0}

Area(T ) = 1
2

〈1,2,3〉
〈0,1,2〉〈0,2,3〉〈0,3,1〉 =: [1, 2, 3]

[4, 1, 3]− [2, 1, 3] = Area(P) = [2, 4, 3]− [1, 2, 4]
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6-Points NMHV as a Volume

Back to higher dimension

ANMHV
6 = Volume(P)

P =
{(1, 2, 3, 4); (1, 2, 3, 6); (1, 3, 4, 6); (1, 4, 5, 2); (1, 4, 5, 6); (1, 2, 5, 6)}
P is triangulated by 3 4-simplices, non-local vertices cancels.

Different BCFW representations give different triangulations
of P

Beyond NMHV amplitudes?
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The Amplituhedron

Gr+(4, 4 + k) ⊃ A = C · Z , C ∈ Gr+(4, n), Z ∈ Gr+(n, 4 + k)
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Summary

Scattering Amplitudes are among the most important
quantities in theoretical physics.

Efficient way to compute them have immediate applications to
experimental physics

In a virtuous circle, these methods shred new lights upon
hidden structures (and hopefully principles) in QFT
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Thanks for your attention!
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