
E. Vitali Lecture 7. Ito integral

In this chapter we will introduce the basic notions of stochastic cal-
culus, starting from brownian motion. When dealing with stochastic
processes, describing phenomena depending on time, one wishes to have
tools to study the functions of stochastic processes, typically performing
“derivatives” or “integrals”. Stochastic calculus is the branch of mathe-
matics dealing with this important topic.

The reason why traditional calculus is not suitable for stochastic pro-
cesses, relying on the brownian motion, lies essentially in the basic fact
that V ar(Bt) = t, implying that Bt “scales” as

√
t, and thus has non

differentiable trajectories.
In order to properly fix the mathematical environment, we assign once

and for all a stochastic basis in usual ipothesis:

(

Ω,F , {Ft}t≥0 , P
)

(1)

where we suppose a continuous brownian motion is defined, with incre-
ments independent of the past. For simplicity, we consider now only the
one-dimensional case:

B =
(

Ω,F , {Ft}t≥0 , {Bt}t≥0 , P
)

(2)

On the other hand, if we take the average:

Nota 1 Having fixed the stochastic basis, we will use the simple notation
X = {Xt}t≥0 to indicate processes. Naturally, we will be careful to verify
that all processes are adapted, i.e. Xt is Ft-measurable.

We start from the observation that a stochastic process X = {Xt}t≥0

can be viewed as a function of two variables:

X : [0,+∞]× Ω → R, (t, ω) Xt(ω) (3)

where ω specifies the random trajectory and t is the time instant.
We will learn in this chapter to define two kinds of integration of pro-

cesses, one with respect to time, and the other with respect to brownian
motion:

∫ β

α

Xsds,

∫ β

α

XsdBs (4)

and to give a precise meaning to expressions of the form:

dXt = Ftdt+GtdBt (5)

which will turn out to be a very important tool to build up new processes
starting from brownian motion and will be the starting point of the the-
ory of stochastic differential equation which we will develop in the next
chapter.

In this chapter we will provide rigorous definitions and results about
stochastic calculus, together with examples and applications. We will
omit the proofs of several theorems, which would require more advanced
tools and can be found in excellent textbooks on this subject.
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I. INTEGRATION OF PROCESSES WITH RESPECT TO

TIME

We start thus from a process, interpreted as a function of two variables:

X : [0,+∞)× Ω → R, (t, ω) Xt(ω) (6)

From the very definition of a stochastic process, we know that, for fixed
t, the function: ω  Xt(ω) is F -measurable and in particular Ft-
measurable. On the other hand, we don’t know, a priori, for fixed ω,
measurability properties of the function t  Xt(ω), a real valued func-
tion defined on [0,+∞).

We will focus our attention to progressively measurable processes,
that is, by definition, processes such that, for all t > 0, the function
(t, ω)  Xt(ω) is B([0, t ]) ⊗ Ft-measurable. It is possible to show that
such technical ipothesis surely holds if the given process is continuous,
i.e. it has continuous trajectories.

For such processes, the function:

t Xt(ω) (7)

is measurable and we can define time integrals, one for each trajectory:

(
∫ β

α

Xsds

)

(ω)
def
=

∫ β

α

Xs(ω)ds (8)

where we have fixed a time interval [α, β], 0 ≤ α < β < +∞.
Thanks to the ipothesis of progressive measurability, the integral, if it

exists, is a random variable. It is thus natural to introduce the following:

Definizione 2 Let Λ1(α, β) be the set made of equivalence classes of
progressively measurable processes such that:

P

(
∫ β

α

|Xs|ds < +∞
)

= 1 (9)

where we consider equivalent two processes X and Y such that:

P

(
∫ β

α

|Xt − Yt|dt = 0

)

= 1 (10)

As usual, we often neglect the difference between a process and an equiv-
alence class of processes.

Since we have chosen to work under usual ipothesis, if X ∈ Λ1(α, β)
we can always turn to a modification such that the integral:

∫ β

α

Xsds (11)

exists for any ω. Such integral defines a real random variable Fβ-
measurable and, if:

∫ β

α

E [|Xs|] ds < +∞ (12)
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then, by classical Fubini’s theorem:

E

[
∫ β

α

Xsds

]

=

∫ β

α

E [Xs] ds (13)

Moreover, if X ∈ Λ1(0, T ), then the function:

(t, ω) 

∫ t

0

Xsds, t ∈ [0, T ] (14)

defines a stochastic process:

{
∫ t

0

Xsds

}

t

(15)

which is continuous, since any integral is continuous with respect to the
extremum, and thus progressively measurable.

To summarize, a stochastic process, under some quite natural ipothe-
sis, can be integrated respect to time: this is a simple Lebesgue integral
of the single trajectories.

II. ITO STOCHASTIC INTEGRAL

We are now going to build up a quite different integration, with respect
to the brownian motion.

A. Stochastic integral of elementary processes

As before, we fix a time interval [α, β], 0 ≤ α < β < +∞ and we start
with the following:

Definizione 3 We say that a stochastic process X is elementary if:

Xt(ω) =

n−1
∑

i=0

ei(ω)1[ti,ti+1)(t) + en(ω)1{β}(t) (16)

for some choice of the integer n and of the times α = t0 < · · · < tn = β.
ei are random variables Fti-measurable.

An elementary process remains equal to a random constant over
finite intervals of time. By construction, such a process is
progressively measurable.

We give now the first basic:

Definizione 4 If X is an elementary process, we call stochastic inte-

gral of X and we denote
∫ β

α
XsdBs the real random variable:

(
∫ β

α

XsdBs

)

(ω)
def
=

n−1
∑

i=0

ei(ω)
(

Bti+1
(ω)− Bti(ω)

)

(17)
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We denote S(α, β) the set of elementary processes, and S2(α, β) the
set of square-integrable elementary processes, i.e. E [|Xt|2] < +∞.
Naturally, X ∈ S2(α, β) if and only if E[e2i ] < +∞.

Le’s study now the map:

S(α, β) ∋ X  I(X)
def
=

∫ β

α

XsdBs (18)

Le’s enumerate some important properties:

1. it is linear;

2. since brownian motion is adapted, I(X) is Fβ-measurable because
it depends only of random variables at times preceding β;

3. it satisfies the following additivity property:

∫ β

α

XsdBs =

∫ γ

α

XsdBs +

∫ β

γ

XsdBs, α < γ < β (19)

4. If X ∈ S2(α, β), then I(X) is square integrable:

E

[

(
∫ β

α

XsdBs

)2
]

< +∞ (20)

To verify this property we show that eiej
(

Bti+1
− Bti

) (

Btj+1
− Bti

)

is integrable: : if i = j, we know that e2i is integrable since

X ∈ S2(α, β);
(

Bti+1
− Bti

)2
is naturally integrable (it is a brown-

ian motion!) and independent of e2i which is Fti-measurable. Thus

e2i
(

Bti+1
− Bti

)2
is integrable being the product of integrable in-

dependent random variables. This implies that ei
(

Bti+1
− Bti

)

is

square-integrable, and thus eiej
(

Bti+1
− Bti

) (

Btj+1
− Bti

)

is inte-
grable being a product of square-integrable random variables.

We have thus defined a linear map:

I : S2(α, β) → L2(Ω,Fβ, P ), X  I(X)
def
=

∫ β

α

XsdBs (21)

Since I(X) is square-integrable, it is also integrable because the prob-
ability P is a finite measure; it thus does make sense to perform the
following calculation:

E
[

∫ β

α
XsdBs|Fα

]

= E
[
∑n−1

i=0 ei
(

Bti+1
−Bti

)

|Fα

]

= (22)

=
∑n−1

i=0 E
[

E
[

ei
(

Bti+1
−Bti

)

|Fti

]

|Fα

]

=

=
∑n−1

i=0 E
[

eiE
[(

Bti+1
− Bti

)

|Fti

]

|Fα

]

=

=
∑n−1

i=0 E
[

eiE
[(

Bti+1
− Bti

)]

|Fα

]

= 0
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where we have used the fact that ei is Fti-measurable and that
(

Bti+1
−Bti

)

is independent of Fti , together wiith the properties of con-
ditional expectation.

Thus we have found that:

E

[
∫ β

α

XsdBs|Fα

]

= 0 (23)

which implies, taking the expectation of both members, that:

E

[
∫ β

α

XsdBs

]

= 0 (24)

.
Let’s now evaluate:

E

[

(

∫ β

α
XsdBs

)2

|Fα

]

= (25)

=
∑

i E
[

e2i
(

Bti+1
− Bti

)2 |Fα

]

+
∑

i 6=j E
[

eiej
(

Bti+1
− Bti

) (

Btj+1
−Btj

)

|Fα

]

If i < j, we have:

E
[

eiej
(

Bti+1
− Bti

) (

Btj+1
− Btj

)

|Fα

]

= (26)

= E
[

E
[

eiej
(

Bti+1
− Bti

) (

Btj+1
−Btj

)

|Ftj

]

|Fα

]

=

= E
[

eiej
(

Bti+1
− Bti

)

E
[(

Btj+1
− Btj

)

|Ftj

]

|Fα

]

= 0

so that no contribution arises from non diagonal terms. We have thus:

E

[

(

∫ β

α
XsdBs

)2

|Fα

]

= (27)

=
∑

i E
[

e2i
(

Bti+1
−Bti

)2 |Fα

]

=

=
∑

i E
[

E
[

e2i
(

Bti+1
− Bti

)2 |Fti

]

|Fα

]

=

=
∑

i E
[

e2iE
[

(

Bti+1
−Bti

)2 |Fti

]

|Fα

]

=

=
∑

i E
[

e2iE
[

(

Bti+1
−Bti

)2
]

|Fα

]

=

= E [
∑

i e
2
i (ti+1 − ti) |Fα] = E

[

∫ β

α
X2

s ds|Fα

]

We conclude that:

E

[

(
∫ β

α

XsdBs

)2

|Fα

]

= E

[
∫ β

α

X2
sds|Fα

]

(28)

which implies the following very important equality:

E

[

(
∫ β

α

XsdBs

)2
]

= E

[
∫ β

α

X2
s ds

]

(29)

carrying a deep geometrical meaning, as we will see in a moment.
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The linear map

I : S2(α, β) → L2(Ω,Fβ, P ), X  I(X)
def
=

∫ β

α

XsdBs (30)

satisfies the following:

||I(X)||2L2(Ω,Fβ ,P ) = E

[
∫ β

α

X2
sds

]

(31)

The right hand side of this equality is a double integral in dt and P (dω)
of the square of the function

(t, ω) Xt(ω) (32)

so that it has the form of a square norm in a L2-like space which we
define in the following:

Definizione 5 We denote M2(α, β) the set of equivalence classes of
progressively measurable processes such that:

E

[
∫ β

α

X2
sds

]

< +∞ (33)

where we identify two processes X and Y if:

P

(
∫ β

α

|Xt − Yt|dt = 0

)

= 1 (34)

M2(α, β) is an Hilbert space, subspace of
L2 ((α, β)× Ω,B(α, β)⊗ Fβ, λ⊗ P ), where λ is the Lebesgue mea-
sure.

We have thus built an isometry, called Ito isometry:

||I(X)||2L2(Ω,Fβ ,P ) = ||X||2M2(α,β) (35)

B. First extension of Ito integral

The map:

I : S2(α, β) ⊂ M2(α, β) → L2(Ω,Fβ, P ), X  I(X)
def
=

∫ β

α

XsdBs

(36)
is linear and isometric:

||I(X)||2L2(Ω,Fβ ,P ) = ||X||2M2(α,β) (37)

and thus it is bounded. Moreover, it is possible to show that S2(α, β)
is a dense subset of M2(α, β), that is, for each process X ∈ M2(α, β),
there exists a sequence

{

Y (n)
}

n
of elementary processes in S2(α, β) such

that:
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X = L2 − lim
n→+∞

Y (n) (38)

where the notation L2 − lim means that:

E

[
∫ β

α

|Y (n)
s −Xs|2ds

]

n→+∞→ 0 (39)

The bounded extension theorem from functional analysis guarantees
the possibility of giving the following:

Definizione 6 We call stochastic integral of a process X ∈ M2(α, β),

and we denote
∫ β

α
XsdBs, the element of L2(Ω,Fβ, P ):

∫ β

α

XsdBs
def
= lim

n→∞

∫ β

α

Y (n)
s dBs (40)

where
{

Y (n)
}

n
⊂ S2(α, β) is any sequence of elementary square-

integrable processes converging to X in M2(α, β). The above written
limit is meant in the geometry of L2(Ω,Fβ, P ).

The map I becomes thus an isometry between Hilbert spaces:

I : M2(α, β) → L2(Ω,Fβ, P ), X  I(X)
def
=

∫ β

α

XsdBs (41)

The properties of the restriction to S2(α, β) guarantee that all the prop-
erties of I(X) discussed above, including the ones about expectations
and conditional expectations, hold for each X ∈ M2(α, β).

C. Second extension of Ito integral

It is possible to extend the definition of the stochastic integral to
processes not belonging to M2(α, β). We won’t enter the details of this
extension, we just sketch the procedure which relies on approximating
sequences.

Definizione 7 We let Λ2(α, β) be the set of equivalence classes of
progressively measurable processes such that:

P

(
∫ β

α

|Xs|2ds < +∞
)

= 1 (42)

where we identify two processes X and Y if:

P

(
∫ β

α

|Xt − Yt|dt = 0

)

= 1 (43)

7



E. Vitali Lecture 7. Ito integral

Naturally M2(α, β) ⊂ Λ2(α, β).
It is possible to show that for each process X ∈ Λ2(α, β) there exists

a sequence of elementary processes
{

Y (n)
}

n
in Λ2(α, β), such that:

∫ β

α

|Y (n)
s −Xs|2ds → 0, n → +∞ (44)

where the limit is meant in probability. Then it turns out that the
sequence:

{
∫ β

α

Y (n)
s dBs

}

n

(45)

converges in probability to a random variable which depends on X but
not on the approximating sequence. Such random variable provides the
natural definition of Ito integral of the process X :

∫ β

α

XsdBs
def
= P − lim

n→+∞

∫ β

α

Y (n)
s dBs (46)

It is quite simple to show that, if X ∈ M2(α, β) this definition coincides
to the one given above. When dealing with processes not belonging to
M2(α, β) care has to be taken since properties involving expectations
and conditional expectations are no longer valid.

Finally, we mention without proof a quite intuitive result, stating that,
for continuous processes, Riemann sums:

n−1
∑

i=0

Xti(Bti+1
−Bti) (47)

converge in probability to Ito integral as the width of the partition tends
to 0.

D. The Ito integral as a function of time

A crucial object for the study of stochastic calculus is the following:

I(t)
def
=

∫ t

0

XsdBs (48)

where X ∈ Λ2(0, T ), and the instant t belongs to the interval [0, T ].
The following very simple but important property holds for s < t:

I(t) = I(s) +

∫ t

s

XsdBs (49)

Moreover, I(t) is Ft-measurable for all t; we already know that this is
the case if X is an elementary process. In the general case, if

{

Y (n)
}

n

is a sequence of elementary processes approximating in probability X in

Λ2(0, T ), and In(t) =
{

∫ t

0
Y

(n)
s dBs

}

n
, then In(t) is Ft-measurable. Since

In(t) converges to I(t) in probability, it is possible to extract a sub-
sequence converging almost surely to I(t), which is thus Ft-measurable.
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It is possible to show, maybe turning to a modification, that I(t) is
continuous.

In the particular case X ∈ M2(0, T ), we already know that I(t) is
square-integrable and:

E [I(t)|Fs] = I(s) + E

[
∫ t

s

XsdBs|Fs

]

= I(s) (50)

so that I(t) is a square-integrable martingale.

E. Wiener integral

A very important special case happens when the integrand is non
random. Let f : [0, T ] → R be a square-integrable real valued function
f ∈ L2(0, T ). The process:

(t, ω) f(t) (51)

independent of ω, belongs to M2(0, T ). In such case:

I(t) =

∫ t

0

f(s)dBs (52)

is called Wiener integral of f on [0, t]. We know that:

E[I(t)] = 0, E[I(t)2] =

∫ t

0

f 2(s)ds (53)

If f is piece-wise constant:

f(s) =

n−1
∑

i=0

ci 1[ti,ti+1)(s) (54)

then:

I(t) =
n−1
∑

i=0;ti<t,ti+1<t

ci
(

Bti+1
−Bti

)

(55)

and thus I(t) is normal, being a linear combination of normal random
variables. This holds also for (I(t1), . . . , I(tn)), which turns out to be
normal. This property continues to hold in the limit in M2(0, T ), since
the convergence in the sense of L2 preserves the normal character of laws
of random variables. We conclude that:

I(t) =

∫ t

0

f(s)dBs ∼ N

(

0,

∫ t

0

f 2(s)ds

)

(56)

III. STOCHASTIC DIFFERENTIAL

Till now we have learned to define integrals of stochastic properties,
both with respect to time and with respect to brownian motion. Before
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proceeding, we briefly summarize what we have done. We have fixed the
mathematical environment assigning a stochastic basis:

(

Ω,F , {Ft}t≥0 , P
)

(57)

in usual ipothesis, that is with a right-continuous filtration such that
Ft contains all the elements of F whose probability is zero. Moreover,
we start from a one-dimensional continuous brownian motion {Bt}t with
increments independent of the past. Given a time interval [0, T ],

1. if F ∈ Λ1(0, T ), maybe turning to a modification, we can build up

a process
∫ t

0
Fsds, for t ∈ [0, T ] continuous, and thus progressively

measurable. Moreover the trajectories of such process are inte-
grable and also square-integrable being continuous on the compact
interval [0, T ], so that:

{
∫ t

0

Fsds

}

0≤t≤T

∈ Λ1(0, T ) ∩ Λ2(0, T ) = Λ2(0, T ) (58)

2. if G ∈ Λ2(0, T ), maybe turning to a modification, we can build

up a process
∫ t

0
GsdBs, for t ∈ [0, T ] continuous, and thus pro-

gressively measurable. Moreover the trajectories of such process
are integrable and also square-integrable being continuous on the
compact interval [0, T ], so that:

{
∫ t

0

GsdBs

}

0≤t≤T

∈ Λ1(0, T ) ∩ Λ2(0, T ) = Λ2(0, T ) (59)

Definizione 8 Let {Xt}t≥0 be a process such that, ∀t ∈ [0, T ], the fol-
lowing equality holds:

Xt = X0 +

∫ t

0

Fsds+

∫ t

0

GsdBs (60)

X0 being a F0-measurable random variable, F ∈ Λ1(0, T ) and G ∈
Λ2(0, T ).

We say that {Xt}t≥0 is an Ito process or, equivalently, that {Xt}t≥0

has stochastic differential:

dXt = Ftdt+GtdBt (61)

An extremely important result, which we will state without proof, is
the following:

Teorema 9 (Ito formula) Let X(i), i = 1, . . . , m be a collection of Ito
processes with differentials:

dX
(i)
t = F

(i)
t dt+G

(i)
t dBt (62)

with F (i) ∈ Λ1(0, T ) and G(i) ∈ Λ2(0, T ). Let also f : Rm×R
+ → R be a

measurable function, continuous in every point (x, t), x = (x1, . . . , xm),
continuously differentiable twice in x and once in t. Then, writing

10



E. Vitali Lecture 7. Ito integral

Xt
def
= (X

(1)
t , . . . , X

(m)
t ), the process Yt

def
= f(Xt, t) is an Ito process with

differential:

dYt = ft(Xt, t)dt+
m
∑

i=1

fxi
(Xt, t)dX

(i)
t +

1

2

m
∑

i,j=1

fxixj
(Xt, t)G

(i)
t G

(j)
t dt (63)

that is:

dYt = (64)

=
(

ft(Xt, t) +
∑m

i=1 fxi
(Xt, t)F

(i)
t + 1

2

∑m

i,j=1 fxixj
(Xt, t)G

(i)
t G

(j)
t

)

dt +

+
(

∑m

i=1 fxi
(Xt, t)G

(i)
t

)

dBt

IV. EXTENSION TO THE MULTIDIMENSIONAL CASE

We conclude this chapter sketching the extension of the stochastic
calculus formalism to the multidimensional case. The generalization is
straightforward: nothing actually change but a slight modification of the
notations.

The starting point is, as usual, a stochastic basis in usual ipothe-
sis where a continuous d-dimensional Brownian motion with increments
independent of the past is assigned once and for all.

The processes Ft of the previous paragraphs take now values in R
m

while the processes Gt take values in R
m×d and we look at each com-

ponent. We say that Ft belongs to Λ1
m(0, T ), T > 0 if Fi,t belongs to

Λ1(0, T ) for all i = 1, . . . , m. In the same way. we say that Gt be-
longs to Λ2

m,d(0, T ) (respectively M2
m,d(0, T )) if Gij,t belongs to Λ2(0, T )

(respectively M2(0, T )) ) for all i = 1, . . . , m, j = 1, . . . d.

The time integral
∫ t

0
Fsds is defined as the vector of components

∫ t

0
Fi,sds, while

∫ t

0
GsdBs is defined as the vector of components

∑d

j=1

∫ t

0
Gij,sdBj,s. Ito isometry becomes:

E

[

∣

∣

∣

∣

∫ t

0

GsdBs

∣

∣

∣

∣

2
]

=

∫ t

0

E
[

|Gs|2
]

ds (65)

and holds whenever Gt ∈ M2
m,d(0, T ). We observe that | | in the left hand

side denotes the norm in R
m, while in the right hand side it denotes the

norm in R
m×d.

If we can write:

Xt = X0 +

∫ t

0

Fsds+

∫ t

0

GsdBs (66)

with X0 F0-measurable we say that X is an Ito process, or, equivalently,
that X has stochastic differential:

dXt = Ftdt+GtdBt (67)

Ito’s formula can be generalized as follows:

11



E. Vitali Lecture 7. Ito integral

Teorema 10 (Multidimensional Ito formula) Let X be a process
taking values in R

m with stochastic differential:

dXt = Ftdt+GtdBt (68)

with Ft ∈ Λ1
m(0, T ) and G ∈ Λ2

m,d(0, T ). We let also f : Rm×R
+ → R be

a measurable function, continuous in every point (x, t), x = (x1, . . . , xm),
continuously differentiable twice in x and once in t. Then the process

Yt
def
= f(Xt, t) admits stochastic differential:

dYt = ft(Xt, t)dt+

m
∑

i=1

fxi
(Xt, t)dXi,t +

1

2

m
∑

i,j=1

fxixj
(Xt, t)

d
∑

h=1

Gih,tGjh,tdt

(69)
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