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Let’s consider now some interesting examples of stochastic differential
equations.

I. GEOMETRIC BROWNIAN MOTION

Let’s consider the following equation in one dimension:
dXt = bXtdt + O'XtdBt (1)
XO =X, t Z 0

where b, o and z are non-negative constants.
We will show now that the solution is the famous geometric brownian

motion:
o2
X; = zexp <<b—?)t+03t) (2)

The parameter x is the initial value of the quantity X, which always
remains positive. In general such process is used to model the temporal
evolution of prices in financial markets. In the case 0 = 0, the evolution
is risk-less, the constant b playing the role of rate of increase. The costant
o, usually called wvolatility, introduce risk in the temporal evolution, the
term o B, governing fluctuations in a price typical of a financial market.

Let’s show that the above process actually satisfies the differential
equation (13). To do this, we write X; = f(¢, B;) where:

s =sess ((5-7) 40 .

and apply Ito formula, obtaining:

2
dX; = 9Ldt + GLdB, + §5hdt = (4)
= (b= %) Xudt + 0 X,dB, + }o* Xodt =

= bXtdt + UXtdBt

which is what we wanted to show.

II. BROWNIAN BRIDGE

Let’s now consider the following equation:
X
Xo=0, 0<t<1
We will show that the solution is:
" dB
X;=(1-t i 6
= [ 2 (0

Before doing this, let’s discuss some general properties of this process.
The first observation is that:
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X0:X1:O (7)

Moreover, the process is the product of a function depending only on
time and a Wiener integral. This means that:

E[X] =0 (8)
and:
Var(X,) = (1 - t)2/0 dsﬁ — (9)
so that:
Xy~ N(0,t(1 —1t)) (10)

This process is called brownian bridge

We are going now to verify that the brownian bridge X; actually satis-
fies the above written stochastic differential equations. For this purpose,
we write:

* dB,
0 1—
Ito formula implies that:
X dB
dX, = =Yidt + (1~ t)dY; = — ttdt+(1—t)1 tt (12)

which is precisely what we wanted to show.

III. LANGEVIN EQUATION IN A FORCE FIELD

Let’s turn now to another interesting example, again in one dimension:

{ dX, = ¢(X,)dt + cdB, (13)

X():l‘, 0§t

where ¢ : R — R is a function satisfying the conditions given in the
previous chapter about existence and uniqueness of solutions of stochastic
differential equations.

We cannot give in a closed form a solution of such equation. Let’s thus
discuss the related Fokker-Planck equation, assuming that the transition
probability density exists:

2

a—y2p<y’t |2,0) = o (6(y)ply,t|z,0))  (14)

1
t|2,0)=0"=
(y.t]z,0)=0"5 a5

@p
Let’s first look for a time-independent solution of the form:

p(y,t]z,0) oc exp (—P(y)) (15)
We have:
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exp (~0(y) (~22)) ) — & (6(y) exp (~(y))) = (16)

=% (£00) e (-20) - 5 (o (-2() (£500) ) +

~(Zow)) exp (~0(y)) + 6ly) (exp (~0(v) ()

We thus see that a solution of this form actually exists provided that:

(@)

Il
w|q
Sl

/N

o) =~ 2-a(y) (7

Let’s thus define:

_ exp(—0(y)

Jedy' exp (—2(y"))
and look for time-dependent solutions of the Fokker-Planck equation,
which we write in the form:

(18)

Po(y)

ply,t]z,0) = e 22y, 1) (19)

If we substitute the above ansatz in the Fokker-Planck equation, using
the notation:

Yoly) = e 2@ (20)

we get:

D)2y, 1) = 55°0%, (4ow)dw, 1)) - 8, (Wow)T, 1) = (1)

= 2008, 0(y) Dy 1) + 0,0n(y) 0y, 0) + 50*vnly) O, iy, )+

(22)
= 0,6(y) Yo(y)¥(y, 1) — S(y)Dyo(y) U(y, t) — d(y)vo(y)Dyd(y, 1) "o
= 0%, 00(4) Dy 1) + 50760 (y) 0, 0,1+ (24)
= 0,0(y) Yo(y)¥(y, 1) — Syt (y) V(y, 1) = (25)
= 3 80000+ %) (~ @) + 50500) ) G(0n0) =
(26)
= 30%0(y) B0, 1) — 5070 (), (27)
Dividing by vo(y) we obtain:
5 ~ 82 1o i
0 00.0) =~ 0.0+ 307 (0 Gty 29
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Measuring the time ¢ as the inverse of an energy, we let:

Lo (29)

and the above equation has the form of an imaginary time Schroedinger
equation related to a Fokker-Planck hamiltonian with a local potential,
of the form:

~ )\62 Ql}o(y)
Hrp = —N\O? + <yy7) 30
P = 0w T) (30)
that is:
» 2 1 s 1.
Hpp = =\, + Z(ﬁy‘b(y)) - §3y¢>(y) (31)
It is immediate to observe that:
Hrpthy =0 (32)

that is 1y is an eigenfunction of Hpp relative to the eigenvalue 0. More-
over, 1 is strictly positive, which means that it has to be the ground
state of the Fokker-Planck hamiltonian, with zero energy!

The Schroedinger-like equation:

—~0b(y. 1) = (Hert) (4.1) (33)
has general solution:

1) = (exp (=tArer) ) (4,) (34)

f being any initial condition.
Since the ground state has zero energy, tha excited states energies have
to be positive, guaranteeing thet, for any choice of the initial condition

f:

D, t) = (exp (~tHer) 1) (0,1) =55 wily) (35)

a part from an unessential multiplicative constant.

Putting all together, we see that any solution of the Fokker-Planck
equation related to the Langevin equation in a force fiels converges, in
the limit ¢ — 400 to the equilibrium probability density:

_exp(=2(y)
Jpdy' exp (—@(y))

Po(y) (36)
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This is a very interesting model in which the phenomenon of approach
to equilibrium appears: the stochastic motion described by the equation:

dX, = ¢(X,)dt + odB, (37)

approaches a stationary asymptotic distribution independent on the ini-
tial condition: a Boltzmann weight related to the potential energy ®(y)
where:

2

o) = -5 5o 2) (33)

IV. FEYNMANN-KAC EQUATION

We are going now to explore further the connection between stochastic
differential equations and partial differential equations. We have learned
in previous chapters to relate the equation:

to the differetial operator:

1 0? 0
L= 3 szaz‘j(ﬂf,t)m + ;bz(%t)a—%

where a = ool Let’s fix some working ipothesis:
Definizione 1 (ipothesis B) We will say that the operator L;:

1 0? 0

i 7

satisfies ipothesis B if the functions a;j(x,t) and b;(x,t):

1. have sub-linear growth, that is there 3 M such that:

VeeR" te(0,7).
2. satisfy Lipschitz contition, that is there 3 L such that:

|laij(z,t) — ay(y,t)| < Llz -yl

Ve, ye R", t € (0,7).

In the realm of the theory of partial differential equations, the following
existence and uniqueness theorem can be proved:
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Teorema 2 Let V : R" - R, f: R"x (0,7) - R and ¢ : R - R
continuous functions and Ly the above mentioned differential operator
statisfying ipothesis B and elliptic, that is there 3\ such that:

Z& ag(z, 1) & > A€ Y(z,t) € R" x (0,T)

Then the parabolic partial differential equation:

—owu(x, t) + Lyu(x,t) — V(x)u(z, t) = f(z,t) (z,t) € R" x (0,T)
u(z,0) = ¢(x) x€R”
(40)
has a unique solution u(z,t) € C*(R™ x (0,T))

Very famous examples of parabolic partial differential equation satis-
fying the ipothesis of the previous theorem are the heath equations and
the Schroedinger equation in imaginary time, V' (z) playing the role of
the potential energy:

-0V (z,t) = —% AV(z,t) + V(x)U(x,t) (41)

Teorema 3 (Feynman-Kac representation formula) The solution
u(zx,t) of the parabolic partial differential equation:

—owu(z,t) + Lyu(z,t) — V(x)u(z,t) = f(z,t) (z,t) € R* x (0,7
u(z,0) =¢(x) xe€R”
(42)
can be written as expectation of stochastic processes in the Feynman-Kac
formula:

w(e,T) = E6(Xr)Zr] - E [ | reer-nzal

where X, is the solution of the stochastic differential equation:

dXt = b(Xt, t) dt + O'(Xt, t) dBt

X, -2 (44)
where a(z,t) = o(x,t) o(x, t)T, and:
Z, = e Jo V(Xs)ds (45)
is the path integral of the function V(z).
Proof. Let’s define the stochastic process:
t~s Oy = Zyu(Xy, T —t) (46)

where u(x,t) is the unique solution of (42).
The first observation is that:
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(I)O = u(a:, T), (I)T = ZTU<XT, O) = ZT(b(XT) (47)
We are going now to evaluate d®, observing that &, = F(Z;, X;,t) where:

F(z,z,t) = zu(z, T — t) (48)

and using Ito formula. We observe that:

as can be immediately verified from the very definition of Z,. We have
thus:

dq)t = —Zt&gu(Xt, T — t)dt -+ U(Xt, T — t)dZt+
+ 20y bi(Xy, T — )05, u(X,, T — t)dt+

+ 70y O u( Xy, T = )03 (X, T — t)d Byt (50)
ij
1
+ §Zt Z Qg5 (Xt, t)@mimju(Xt, T— t)
ij
that is:
d(bt = Zt (—@ + ‘Ct) U/(Xt, T — t)dt + U/(Xt, T — t)dZt+

+ 3 0pul X, T — )03y (X,, T — t)dBj, (51)

ij

We stress that the the terms with 0,.F and 0,,F wvanishes because the
function F is linear in z and the Ito differential dZ; does not contain
dBs.

Since, by construction, u is a solution of the partial differential equa-
tion (42), we get:

APy = Z, (V(X)u(Xe, T — 1) + f( X, T — 1)) dt + u(Xy, T — t)dZy+
Z 8%U(Xt, T — t)O'Z'j<Xt, T — t)dB]t =
]
= Z,f(X,, T —t)dt + > 0pu(X,, T — t)03;(X,, T — t)dBj,
ij
(52)

where we have used the explicit expression for dZ;.
We have thus:

T T
<1>T—c1>0:/ th(Xt,T—t)dt+/ > Opu(X,, T—t)0i;(X,, T—1)dBj,
0 0

(53)
so that, taking the expectation of both members:
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T
EZr¢(Xr)] — Elu(z,T)] = E U Zuf(Xe, T — t)dt] (54)
0
which gives the Feynmann-Kack representation:
ote.) = Blzrotxn) - B| [ At -na] 69
0

Let’s specialize the Feynmann-Kac representation in the case of imagi-
nary time Schroedinger equation:

— 0¥ (x,t) = —% AV(z,t)+ V(x)U(x,t)
U(z,0) = o(x)

(56)

We have:

u(z, T)=FE |e” Iy VietBudt (0 4 BT)] (57)

where we have observed that, in such simple case X; =z + B;.

V. KAKUTANI REPRESENTATION

Let’s turn now to Poisson problem with Dirichlet boundary conditions:

PAu(z) = f(z) xze
{u(x) =o¢(xr) x € (58)

where 2 C R" is a bounded open set. In one-dimension, the equation is:

su'(z) = f(z) =€ (a,b)

u(a) = ¢q (59)
u(b) = ¢
and the solution has the simple form:
u(e) = o+ T (0= 6) + Gla) = T—GB)  (60)

where G(z) =2 [ da’ faxl dx” f(2"). On the other hand, when n > 1, the
problem is much more difficult, and an analytical solution can be found
only in a few special cases.

We already know that the differential operator £ = %A is related to
the stochastic differential equation:

(61)

dXt - dBt
XQ =X

with solution X; = B; 4+ x. For t > 0 the process X; takes values outside
the set {2 with probability P(X; ¢ ) # 0, so that the process Y; = u(X;)
is well defined only if f(x) and u(z) can be extended to functions of class

8
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C?*(R™). From now on we will assume that this is the case. Ito formula
provides the following equality:

? (62)
Yy = u(z)
that is u(X;) = u(x) + fo s)ds + fot Vu(X;)dBs. Taking the ex-

pectations of both members, provided that Vu(X,) is in M?(0,t), we
get:

HM&HZM@+ELKf@Q@] (63)

We know the value of E[u(X;)] only if X; lies on the boundary 0f2, thanks
to Dirichlet boundary conditions. We thus introduce the following:

Definizione 4 (first-pass instant) If {X;};>0 is a stochastic process
taking values inside a measurable space (E,E), and A € & is a measurable
subset, the random variable:

Ta(w) = inf{t : Xy(w) € A} (64)
is called first-pass instant of the process X; in the set A.

and specialize (63) obtaining:

ute) = Bl - | [ 1) as (65)

The interpretation of this result is simple: we can express the solution
of the Poisson-Dirichlet problem as expectation of a suitable function of
the process X;.

The procedure we have followed is somehow euristic, since, in general,
we cannot guarantee that f(z) and u(x) can be extended to functions of
class C*(R™) and, moreover, we have introduced a substitution ¢ ~ Tyq
in a non-rigorous way. Finally, we are not sure that E[ryq] < occ.

A fully rigorous treatment, which goes beyond the aim of this book,
relies on the the following two basic theorems, which we state without
proof:

Teorema 5 (existence and uniqueness) Let Q@ C R™ be a bounded
open set, ¢ : Q@ — [0,00) and ¢ : 02 — R functions satisfying lipschitz
property and L a “time independent” differential operator of the form:

L= a2 Y ba)
2 > i Ox;0x; i 8@3
satisfying ipothesis (B) and elliptic. The equation:

Lu(r) — el)u(@) = f(x) =€ 9
{<>=¢@> v e oo o

has a unique solution u(x) € C*(Q).
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Teorema 6 (Kakutani formula) Under the ipothesis of the previous
theorem, the solution of the elliptic partial differential equation:

Lu(r) — ele)u(@) = f(x) =€ 9
{ (@) = o(z) v e o9 o0

can be represented in the Kakutani form:

0(#) = ElZryd(Xry) { / F(x st} (63)

where X, is the solution of the stochastic differential equation:

dXt = b(Xt)dt + O'(Xt)dBt

(69)
XO =X

with a(x) = o(x) 0T (x), Taq is the first-pass instant of the process X; in
the boundary OS2 of the set Q) and:

A Jo e(Xy)dr (70)
s the path integral of the function c.

Il teorema di Kakutani garantisce che ad un’ampia classe di EDP
ellittiche si pud associare un’EDS la cui soluzione é nota analitica-
mente o facilmente simulabile, ed ha la prerogativa che E[rpq] < oo;
la soluzione del’EPD pud essere espressa come media di un funzionale
del processo stocastico soluzione dell’EDS corrispondente. D’altra parte,
la conoscenza della soluzione di un’EPD consente di accedere ad infor-
mazioni sul tempo di primo passaggio della soluzione dell’EDS corrispon-
dente, altrimenti molto difficili da calcolare.
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