
E. Vitali Lecture 5. Conditional Expectation

So far we have focussed on independent random variables, which are
well suitable to deal with statistical inference, allowing to exploit the very
powerful central limit theorem. However, for the purpose of studying
time dependent random phenomena, it is necessary to consider a much
wider class of random variables.

The treatment of mutually dependent random variables is based on
the fundamental notion of conditional probability and on the more so-
phisticated conditional expectation which we will present in this chapter.

The conditional probability is presented in every textbook about prob-
ability; we sketch this topic briefly in the following section and then we
turn to the conditional expectation, which will provide a very important
tool to deal with stochastic processes.

I. CONDITIONAL PROBABILITY

Definizione 1 Let (Ω,F , P ) be a probability space and B ∈ F an event
with non-zero probability; the conditional probability of A with respect
to B is:

P (A|B) =
P (A ∩ B)

P (B)
(1)

Intuitively, P (A|B) is the probability that the event A occurs when we
know that the event B has occurred. It is very simple to show that the
map:

F ∋ A P (A|B) (2)

defines a new probability measure on (Ω,F). If the events A and B are
independent, P (A|B) = P (A): the occurring of the event B does not
provide any information about the occurring of A.

From the definition (1) of conditional probability the following impor-
tant theorems easily follow:

Teorema 2 (Bayes) Let (Ω,F , P ) a probability space and A,B ∈ F
events, P (A) 6= 0, P (B) 6= 0; then:

P (A|B)P (B) = P (B|A)P (A) (3)

Proof. Both members are equal to P (A ∩B).

Teorema 3 (Law of Total Probability) Let (Ω,F , P ) a probability
space and A ∈ F an event and {Bi}

n
i=1 mutually disjoint events, P (Bi) 6=

0, such that ∪iBi = Ω; then:

P (A) =
n

∑

i=1

P (A|Bi)P (Bi) (4)

Proof.

P (A) =

n
∑

i=1

P (A ∩ Bi) =

n
∑

i=1

P (A|Bi)P (Bi)
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II. CONDITIONAL EXPECTATION

The remainder of the chapter is devoted to the presentation of the
conditional expectation, which can be thought as a generalization of the
concept of conditional probability: the idea of conditional expectation
rises from the observation that the knowledge of one or more events,
represented by a sub-σ-algebra G ⊂ F , allows to “predict” values taken
by a random variable X through another random variable E[X|G], the
so-called conditional expectation of X with respect to G.

Let X be a real integrable random variable on a probability space
(Ω,F , P ), and G a sub-σ-algebra of F . Consider the map:

G ∋ B  QX,G(B) :=

∫

B

X(ω)P (dω) (5)

If X ≥ 0, (5) defines a positive measure on (Ω,G), absolutely continuous
with respect to P ; by virtue of the Radon-Nikodym theorem, there exists
a real random variable Z, G-measurable, a.s. unique and such that:

QX,G(B) =

∫

B

Z(ω)P (dω) ∀B ∈ G (6)

Such random variable will be denoted:

Z = E [X|G] (7)

and called conditional expectation of X given G. If X is not positive,
it can be represented as difference of two positive random variables X =
X+ − X− and its conditional expectation given G can be defined as
follows:

Z = E [X|G] = E
[

X+|G
]

− E
[

X−|G
]

(8)

The conditional expectation E [X|G] is defined by the two conditions:

1. E [X|G] is G-measurable

2. E [1B E [X|G]] = E [1BX ] , ∀B ∈ G

With measure theory arguments basta una citazione?, it can be proved
that the second condition is equivalent to:

E [W E [X|G]] = E [W X ] (9)

for all bounded and G-measurable random variables W .
The key point is the G-measurability: if G represents the amount of

information available, in general we cannot access all information about
X ; on the other hand, we can build up E [X|G], whose distribution is
known, and use it to replace X whenever events belonging to G are
considered.

We will often use the notation:

P (A|G)
def
= E [1A|G] (10)

and call (10) the conditional probability of A given G; we stress
that (10), in contrast to (1), is a random variable. Moreover, it is G-
measurable and such that:
∫

B

P (A|G) (ω)P (dω) =

∫

B

1A(ω)P (dω) = P (A ∩ B), ∀B ∈ G (11)
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III. AN ELEMENTARY CONSTRUCTION

We will now provide some intuitive and practical insight into the for-
mal definition (6) of conditional expectation, giving an elementary con-
struction of (6) under some simplifying hypotheses. Let Y : Ω → R be a
random variable and, as usual:

σ(Y )
def
=

{

A ⊂ Ω|A = Y −1(B), B ∈ B(R)
}

(12)

the σ-algebra generated by Y , i.e. the smallest sub-σ-algebra of F
with respect to which Y is measurable. Intuitively, if our amount of
information is σ(Y ), this means that, after an experiment, we know only
the value of Y : we do not have access to other information.

Let us assume that Y be discrete, i.e. that it can assume at most
countably infinite values {y1, . . . , yn, . . . }. For all events A ∈ F , let us
define:

P (A|Y = yi)
def
=







P (A∩{Y=yi})
P (Y=yi)

if P (Y = yi) > 0

0 otherwise

(13)

Equation (13) is nothing but the familiar conditional probability of A
given the event {Y = yi}. Due to the law of total probability:

P (A) =
∑

i

P (A|Y = yi)P (Y = yi) (14)

Let now X : Ω → R be an integrable random variable, which we assume
discrete for simplicity, and consider the map:

B(R) ∋ H  P (X ∈ H|Y = yi) (15)

(15) is a probability measure on R, with expectation:

E [X|Y = yi]
def
=

∑

j

xjP (X = xj |Y = yi) (16)

Consider now the function h : R → R:

R ∋ y  h(y)
def
=

{

E [X|Y = yi] , if y = yi, P (Y = yi) > 0

0 otherwise
(17)

h is clearly measurable, so that it makes perfectly sense to construct the
random variable Z : Ω → R

ω ∈ Ω 7→ Z(ω)
def
= h (Y (ω)) (18)

that is, recalling (16):

Z(ω) =

{

E [X|Y = yi] , if Y (ω) = yi, P (Y = yi) > 0

arbitrary value otherwise
(19)
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Equation (19) has a straightforward interpretation: given a realization of
Y , the expectation of the possible outcomes of X can be computed; this
expectation is random, like Y . At a first sight, the arbitrary constant
in (19) could seem disturbing: nevertheless, the subset of Ω on which Z
takes an arbitrary value has probability equal to 0.

Incidentally, we remark that, for all A ∈ F :

E [1A|Y = yi] =
∑

a=0,1

aP (1A = a|Y = yi) = P (A|Y = yi) (20)

It remains to show that:

Z(ω) = E [X|σ(Y )] (ω) a.s. (21)

First, we show that Z : Ω → R is σ(Y )-measurable; to this purpose,
consider H ∈ B(R):

Z−1(H) = (h ◦ Y )−1 (H) = Y −1
(

h−1(H)
)

∈ σ(Y ) (22)

since h−1(H) ∈ B(R). Therefore, Z is σ(Y )-measurable. Let now be W
a bounded and σ(Y )-measurable random variable (this includes the case
W = 1B, with B ∈ σ(Y )). By virtue of a theorem by J. L. Doob, which
we state without proof reminding the interesting reader to [? ], there
exists a measurable function w : R → R such that W = w(Y ). Recalling
that Z = h(Y ), we therefore have:

E [WZ] =
∑

i w(yi)E [X|Y = yi]P (Y = yi) = (23)

=
∑

i w(yi)
∑

j xjP (X = xj |Y = yi)P (Y = yi) =

=
∑

i,j w(yi)xjP ({X = xj} ∩ {Y = yi}) = E [WX ]

which is exactly the second condition defining E [X|σ(Y )].

IV. AN EXPLICIT CALCULATION

The notion of conditional expectation E [X|σ(Y )] is well defined also
for continuous random variables X, Y . Several authors write, for the sake
of simplicity, E [X|Y ] instead of E [X|σ(Y )].

Remarkably, since E [X|σ(Y )] is σ(Y )-measurable, by virtue of Doob’s
theorem there exists a measurable function g such that:

E[X|Y ] = g(Y ) (24)

Equation (24) has the intuitive interpretation that to predict X given Y
it is sufficient to apply a measurable “deterministic” function to Y . In
the remainder of this section, we will present a practical way to compute
explicitely g(Y ) in some special situations. The following discussion will
be based on the simplifying assumptions:

1. that the random variables X, Y take values in R.
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2. that X and Y have joint law absolutely continuous with respect
to the Lebesgue measure, and therefore admit joint probability
density p(x, y).

3. that the joint probability density p(x, y) be a.e. non-zero.

Under these hypotheses, the marginal probability densities and the condi-
tional probability density of X given Y can be defined with the formulas:

pX(x) =

∫

dy p(x, y) pY (y) =

∫

dx p(x, y) p(x|y) =
p(x, y)

pY (y)
(25)

By virtue of these definitions, and of Fubini’s theorem, we find that for
all bounded measurable functions h : R → R one has:

E[Xh(Y )] =

∫

dx

∫

dy p(x, y) xh(y) =

=

∫

dy pY (y) h(y)

∫

dx x p(x|y) = E[g(Y )h(Y )]

where the measurable function:

g(y) =

∫

dx x p(x|y)

has appeared. Since, on the other hand:

E[Xh(Y )] = E[E[X|Y ]h(Y )]

we conclude that E[X|Y ] = g(Y ). As an example of remarkable impor-
tance, consider a bivariate normal random variable (X, Y ) ∼ N(µ,Σ)
with joint density:

p(x, y) =
e
− (x−µx)2

2σ2
x(1−ρ2)

+
ρ(x−µx)(y−µy)

σxσy(1−ρ2)
−

(y−µy)
2

2σ2
y(1−ρ2)

2πσxσy
√

1− ρ2

A straightforward calculation shows that:

pY (y) =
e
−

(y−µy)
2

2σ2
y

√

2πσ2
y

which allows to write p(x|y) and to compute g(y). The result is:

g(y) = µx +
ρ σx

σy
(y − µy)

The conditional expectation of X given Y is therefore, in this special
situation, a linear function of Y , explicitly depending on the elements of
the covariance matrix Σ.
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V. PROPERTIES OF CONDITIONAL EXPECTATION

Teorema 4 Let X be a real integrable random variable, defined on a
probability space (Ω,F , P ), and G a sub-σ-algebra of F . Then:

1. the map X  E [X|G] is a.s. linear

2. if X ≥ 0 a.s., then E [X|G] ≥ 0 a.s.

3. E [E [X|G]] = E [X ].

4. if X is G-measurable, then E [X|G] = X a.s.

5. if X is independent on G, i.e. is if σ(X) and G are independent,
then E [X|G] = E [X ] a.s.

6. if H ⊂ G is a σ-algebra, then E [E [X|G] |H] = E [X|H] a.s.

7. if Y is bounded and G-measurable, then E [Y X|G] = Y E [X|G] a.s.

Proof. The first two points are obvious. To prove the third one, it is
sufficient to recall that:

E [1B E [X|G]] = E [1BX ] , ∀B ∈ G (26)

and choose B = Ω. To prove the fourth point, it is sufficient to ob-
serve that, in such case, X itself satisfies the two conditions defining the
conditional expectation.

To prove the fifth point, observe that since the random variable ω 7→
E [X ] is constant and therefore G-measurable, and since for all B ∈ G
the random variable 1B is clearly G-measurable and independent on X:

E [1BX ] = E [1B]E [X ] = E [1BE [X ]] (27)

so that ω 7→ E [X ] satisfies the two conditions defining the conditional
expectation.

To prove the sixth point, observe that by definition E [E [X|G] |H] is
H-measurable; moreover, since B ∈ H, 1B é H-measurable and also G-
measurable (since G contains H). Therefore:

E [1B E [E [X|G] |H]] = E [1B E [X|G]] = E [1BX ] (28)

where the definition of conditional expectation has been applied twice.
To prove the last point observe that, as a product of G-measurable ran-

dom variables, Y E [X|G] is G-measurable. For all bounded, G-measurable
random variables Z, therefore:

E [Z Y E [X|G]] = E [Z Y X ] = E [Z E[Y X|G]] (29)

since also ZY is bounded and G-measurable.
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VI. CONDITIONAL EXPECTATION AS PREDICTION

We are going now to put on a firm ground the intuitive idea of the
conditional expectation as prediction: E [X|G] “predicts” X when the
amount of information is G. To this purpouse, we need a geometrical
interpretation: let L2 (Ω,F , P ) be the Hilbert space of (complex valued)
square-integrable random variables, endowed with the inner product:

〈u|v〉
def
= E [uv] (30)

Moreover, as usual G is sub-σ-algebra of F . The space L2 (Ω,G, P ) is a
closed subspace L2 (Ω,F , P ). Let us define the mapping:

L2 (Ω,F , P ) ∋ v  Q̂v
def
= E [v|G] (31)

We leave to the reader the simple proof of the fact that Q̂ is a linear
operator from L2 (Ω,F , P ) to L2 (Ω,G, P ).

Let us prove that Q̂ is idempotent, that is Q̂2 = Q̂:

Q̂2v = Q̂E [v|G] = E [E [v|G] |G] = (32)

= E [v|G] = Q̂v

Moreover Q̂ is self-adjoint, since:

〈u|Q̂v〉 = E [uE [v|G]] = E [E [uE [v|G] |G]] = (33)

= E [E [v|G]E [u|G]] = E [E [vE [u|G] |G]] =

= E [vE [u|G]] = E
[

E [u|G]v
]

= 〈Q̂u|v〉

Therefore Q̂ is an orthogonal projector onto the subspace L2 (Ω,G, P ).
Let now be X ∈ L2 (Ω,F , P ) a real random variable; let us look for

the element Y ∈ L2 (Ω,G, P ) such that ||X − Y ||2 is minimum. The

minimum is reached for Y = E [X|G]. The key point is that Y = Q̂Y , in
fact:

E [(X − Y )2] = ||X − Y ||2 = ||Q̂X + (1− Q̂)X − Q̂Y ||2 = (34)

= ||Q̂(X − Y )||2 + ||(1− Q̂)X||2 = ||Y − Q̂X||2 + ||(1− Q̂)X||2

and the minimum is achieved precisely at Y = Q̂X .
In the sense of L2, thus, Y = E [X|G] is the best approximation of

X among the class of G-measurable functions. This is the justification
of the interpretation of Y = E [X|G] as a prediction: within the set of
square-integrable G-measurable random variables, Y = E [X|G] is the
closest one to X in the topology of L2.

VII. LINEAR REGRESSION AND CONDITIONAL

EXPECTATION

There is a very interesting connection between conditional expecta-
tion and linear regression which we are going now to explore. Let’s
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consider two real random variables Y and Z, representing two properties
one wishes to measure during an experiment. Quite often it happens
that the quantity Z can be measured with an high accuracy, while Y , a
“response”, contains a signal and a noise difficult to disentangle. In such
situations, from a mathematical point of view, the experimentalist would
like to work with σ(Z)-measurable random variables: such quantities, in
fact, have a well defined value once the outcome of Z is known. The
key point is that E[Y |Z] is the best prediction for Z within the set of
σ(Z)-measurable random variables.

Since the conditional expectation is a linear projector, we can always
write the unique decomposition:

Y = E[Y |Z] + ε (35)

where ε is a real random variable. It is immediate to show that:

E[ε] = E[ε|Z] = 0 (36)

Moreover, since Y − E[Y |Z] is orthogonal to all the random variables
σ(Z)-measurable:

E[(Y −E[Y |Z])h(Z)] = 0 (37)

in particular the following orthogonality property holds:

E[εZ] = 0 (38)

In order to proceed further, let’s assume that the two-dimensional
random variable (Z,X) is normal. In such case we know that the
conditional expectation depends linearly on Z:

E[Y |Z] = a+ bZ (39)

with:

a =
V ar(Z)E[Y ]−E[Z]Cov(Z, Y )

V ar(Z)

b =
cov(Z, Y )

var(Z)

(40)

The “error” ε = Y − (a + bZ) is also normal being a linear function of
(X,Z) of zero mean. Moreover, since E[εZ] = 0, ε is independent of
Z. The variance is:

σ2 = V ar(ǫ) = E
[

(Y − (a+ bZ))2
]

(41)

and, from the geometrical interpretation of the conditional expectatio,
we know that the parameters in (40) minimize such quantity.

To summarize, we have found that, whenever two quantities Z and
Y have a joint normal law, the best prediction we can do for Y once we
know the value of Z is a linear function of such value. The experimen-
talist collects a set of data {(z1, y1), . . . , (zn, yn)}, interprets such data
as realization of two-dimensional random variables (Zi, Yi) independent
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and identically distributed as (Z, Y ), and uses such data to infer the
values of a,b and σ2, the last one providing the “accuracy” of the linear
approximation.

For the statistical analysis, we refer to the previous chapter.

VIII. A USEFUL FORMULA

The conclusion of the present chapter is devoted to the presentation
of a useful result, which will be used later.

We already know that if X is integrable and G-measurable, Z is inte-
grable an independent on G, and the product XZ is integrable, then:

E [XZ|G] = XE [Z|G] = XE [Z] (42)

If X : Ω → E is a G-measurable random variable taking values in the
measurable space (E, E), f : E → R is a measurable function such that
f ◦ X is integrable, H a sub-σ-algebra of F independent on G and Z a
H-measurable and integrable random variable, with f(X)Z integrable,
(42) implies the following equality:

E [f(X)Z|G] = f(X)E [Z] (43)

The latter can be rewritten introducing the function ψ : E × Ω → R:

E × Ω ∋ (x, ω) ψ(x, ω)
def
= f(x)Z(ω) (44)

which is E ⊗H-measurable. If ω  ψ(X(ω), ω) is integrable, we have:

E [ψ(X, ·)|G] = Φ(X), Φ(x)
def
= E [ψ(x, ·)] (45)

Moving to functions ψ which are given by linear combinations of fac-
torized functions and using suitable measure-theoretical arguments one
arrives at the following general result, of which we omit the proof:

Teorema 5 Let (Ω,F , P ) be a probability space, G and H mutually
independent sub-σ-algebras of F . let X : Ω → E be a G-measurable
random variable taking values in the measurable space (E, E) and ψ a
function ψ : E×Ω → R E ⊗H-measurable, such that ω 7→ ψ(X(ω), ω)
is integrable. Then:

E [ψ(X, ·)|G] = Φ(X), Φ(x)
def
= E [ψ(x, ·)] (46)
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