
E. Vitali Lecture 6. Brownian motion

Markov chains, presented in the previous chapter, belong to a wide
class of mathematical objects, the stochastic processes, which will intro-
duced in the present chapter. Stochastic processes form the basis for the
mathematical modeling of time-dependent phenomena. We will begin
focussing our attention on the randomly-driven motion of a pollen grain,
the well-known brownian motion, historically the first stochastic process
to be stated in rigorous mathematical terms. The brownian motion will
represent our starting point for introducing the fundamental notions of
stochastic processes. It will be introduced retracing the pioneering work
of A. Einstein.

I. BROWNIAN MOTION: A HEURISTIC INTRODUCTION

For the sake of simplicity, the one-dimensional case will be considered
first, the generalization to higher dimensionality being straightforward.
We will assume that in a given time interval τ a pollen grain, due to
random collisions with water molecules, undergoes a random variation ζ
in its position. We will denote through:

Φ(τ, ζ) (1)

the probability density for this transition phenomenon, in such a way as:

∫ b

a

Φ(τ, ζ) dζ (2)

can be interpreted as the probability that the particle, being in any given
position x at time t, is found in the interval y ∈ [x + a, x + b] at time
s = t + τ ; we are assuming in particular that the transition probability
density Φ(τ, ζ) depends only on the quantities τ = t− s and ζ = y − x.

This object remarkably resembles the transition probability density of
Markov chains, except for the fact that, in the present context, time and
sample space are continuous. We will assume that the following property:

Φ(τ, ζ) = Φ(τ,−ζ) (3)

holds, which expresses the fact that moving rightwards of leftwards is
equally probable, and implies that the “mean jump” vanishes:

∫

R

dζ ζ Φ(τ, ζ) = 0 (4)

Let now
∫

A p(x, t) dx denote the probability that, at time t, the particle
lies in the interval A. We will assume that the following very natural
continuity equation holds:

p(x, t+ τ) =

∫

R

dζ Φ(τ, ζ) p(x− ζ, t) (5)

expressing the fact that the position at time s = t+ τ is the sum of the
position at time t and of the transition occurred between times t and s. If
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τ is small, provided that Φ(τ, ζ) tends to 0 rapidly enough as |ζ | → +∞,
we can expand in Taylor series:

p(x, t+ τ) = p(x, t) + τ
∂p

∂t
(x, t) + . . . , (6)

p(x− ζ, t) = p(x, t)− ζ
∂Φ

∂x
(x, t) +

1

2
ζ2
∂2Φ

∂2x
(x, t) + . . . (7)

Substituting the above expansions in the continuity equation (5) and
retaining non vanishing low-order terms only:

p(x, t+τ) = p(x, t)+τ
∂p

∂t
(x, t)+· · · = p(x, t)+

1

2

∂2p

∂2x
(x, t)

∫

R

dζ ζ2Φ(τ, ζ)+. . .

(8)
where we have taken into account the fact (4) that the mean transition
is vanishing, enabling us to retain terms of at most first order in τ and
second in ζ , and that the transition probability density is normalized to
1. Inspired by the microscopic theory of diffusion, we are induced to
interpret the quantity:

D =
1

2τ

∫

R

dζ ζ2Φ(τ, ζ) =
σ2(τ)

2τ
(9)

as macroscopic diffusion coefficient; for this quantity to be constant, it
is necessary to assume that σ2(τ) is proportional to τ . Under this addi-
tionally hypothesis, one arrives to the diffusion equation:

∂p

∂t
(x, t) = D

∂2p

∂2x
(x, t) (10)

To complete the description, it is necessary to equip the diffusion equation
(10) with an initial condition. A possible choice is:

p(x, 0) = δ(x) (11)

representing a particle at the origin of a suitable reference frame. Were
that the case, the solution of (10) would be a gaussian probability dis-
tribution:

p(x, t) =
1√
4πDt

exp

(

− x2

4Dt

)

(12)

which coincides, by virtue of the continuity equation (5), with the tran-
sition probability density:

Φ(τ, ζ) =
1√

4πDτ
exp

(

− ζ2

4Dt

)

(13)

This expression will represent a natural starting point for the rigorous
mathematical treatment of the brownian motion.
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II. THEORY OF STOCHASTIC PROCESSES

The heuristic discussion of the preceding paragraph has put in evi-
dence several remarkable aspects: first, the motion of the pollen grain
is treated with probabilistic arguments. This implies that a probability
space (Ω,F , P ) has to be introduced, on which it must be possible to
define the random variables:

Xt : (Ω,F , P ) →
(

R
d,B

(

R
d
))

(14)

with the interpretation of position of the pollen grain at time t. The time
parameter t takes values on a suitable time interval T ⊆ [0,+∞). The
movement of the pollen grain will be therefore described by the family:

{Xt}t∈T (15)

of random variables. For all ω ∈ Ω, one obtains the trajectory:

t Xt(ω) (16)

corresponding to a possible motion of the system. Moreover, in the above
outlined formalism it makes sense to compute expressions of the form:

P (Xt1 ∈ A1, . . . , Xtn ∈ An) , A1, . . . , An ∈ B
(

R
d
)

(17)

As it is well known, the σ-algebra F contains all possible events, corre-
sponding to all the possible statements one can formulate once an out-
come of the experiment is registered; in the present context, however,
the information obtained through an observation increases with time:
at time t one has gained knowledge of the position of the particle for
past times s ≤ t, but not for future times s > t. This means that a
key ingredient for the probabilistic description of the brownian motion is
represented by the following definition:

Definizione 1 We call filtration {Ft}t∈T , T ⊂ R
+, a family of sub-σ-

algebras of F increasing with t, i.e. such that Fs ⊂ Ft if s ≤ t. We call
stochastic basis a probability space endowed with a filtration, i.e. an
object of the form:

(

Ω,F , {Ft}t∈T , P
)

(18)

Intuitively, Ft contains all events that it is possible to discriminate, that
is to conclude whether have occurred or not, once the system has been
observed up to the instant t. In other words, it represents all the infor-
mation available up to time t and including time t.

We can now give the following general definition:

Definizione 2 A stochastic process is an object of the form:

X =
(

Ω,F , {Ft}t∈T , {Xt}t∈T , P
)

(19)

where:

1.
(

Ω,F , {Ft}t∈T , P
)

is a stochastic basis

3



E. Vitali Lecture 6. Brownian motion

2. {Xt}t∈T is a family of random variables taking values in a measur-
able space (E, E):

Xt : Ω → E (20)

and such that, for all t, Xt is Ft-measurable. To express this cir-
cumstance, we say that {Xt}t∈T is adapted to the filtration.

The set E is called state space of the process: for the purpose of our
applications, it will coincide with R

d, endowed with the σ-algebra of
Borel sets. Given ω ∈ Ω, the map:

T ∋ t Xt(ω) ∈ E (21)

is called trajectory of the process, which is called (almost certainly)
continuous if the set of points ω such that the corresponding trajectory
is continuous has probability 1.

1. Finite-dimensional Laws

Let X =
(

Ω,F , {Ft}t∈T , {Xt}t∈T , P
)

be a stochastic process and π =
(t1, . . . , tn) a finite set of instants in T , such that t1 < · · · < tn. The map:

Ω ∋ ω  (Xt1(ω), . . . , Xtn(ω)) ∈ En (22)

is clearly a random variable; let µπ be the image of P through such map:

µπ (A1 × · · · ×An) = P (Xt1 ∈ A1, . . . , Xtn ∈ An) , A1, . . . , An ∈ E .
(23)

for all collections π; µπ is called a finite-dimensional law of X . Two
processes sharing the same finite-dimensional laws are said equivalent.

Given π, µπ is a probability measure on (En,⊗nE), ⊗nE being the
σ-algebra generated by set of the form A1 × · · · × An, Aj ∈ E . Finite-
dimensional laws, by construction, satisfy a simple consistency prop-
erty:

µπ (A1 × ..Ai−1 ×E × Ai+1..×An) = µπ′ (A1 × ..Ai−1 × Ai+1..× An)
(24)

for all t and π = (t1, . . . , tn), provided that π′ = (t1, . . . ti−1, ti+1, . . . , tn).
On the contrary, we will say that a family of probability measures {µπ}π
is consistent if it satisfies the property (24). We state without proof,
that the interested reader can find in [? ], the following fundamental
result:

Teorema 3 (Kolmogorov) Let E be a complete and separable metric
space, E the σ-algebra of Borel sets and {µπ}π a family of consistent
probability measures. Let:

Ω
def
= ET = {ω : T → E} (25)

be the set of all functions ω from T to E, and:

F def
= B(E)T (26)
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the σ-algebra generated by the cylindrical sets:

{ω ∈ Ω | ω(t1) ∈ A1, . . . , ω(tn) ∈ An} (27)

let moreover:
Xt(ω)

def
= ω(t) (28)

and Ft = σ (Xs, s ≤ t), be the natural filtration.
Then there exists a unique probability measure P on (Ω,F) such

that the measures {µπ}π are the finite-dimensional laws of the stochastic
process X =

(

Ω,F , {Ft}t∈T , {Xt}t∈T , P
)

.

Despite its complexity, the meaning of Kolmogorov’s Theorem is clear:
for any generic family of consistent probability distributions there exists a
unique stochastic process having precisely that probability distributions
as finite-dimensional laws. In many contexts, it is interesting to draw
some conclusions about the regularity of the trajectories of a stochastic
process.

To this purpose, we preliminary mention that two processes X =
(

Ω,F , {Ft}t∈T , {Xt}t∈T , P
)

and X ′ =
(

Ω′,F ′, {F ′
t}t∈T , {X ′

t}t∈T , P ′) are
called modifications of each other if (Ω,F , P ) = (Ω′,F ′, P ′) and if, for
all t ∈ T , Xt = X ′

t almost surely.
We state without proof, that the interested reader can find in [? ],

the following:

Teorema 4 (Kolmogorov) Let X be a process taking values in R
d, and

such that for suitable α > 0, β > 0, c > 0 and for all instants s, t:

E
[

|Xt −Xs|β
]

≤ c|t− s|1+α (29)

Then there exists a modification X ′ of X which is continuous.

A. Construction of the Brownian Motion

We now have all instruments for giving a precise definition of the
brownian motion. Motivated by Einstein’s discussion, we consider
(

R
d,B

(

R
d
))

as state space of the process. We recall that in the his-
torical tractation of the brownian motion a key role was played by the
transition probability density, which follows a normal law. Moreover, in
Einstein’s discussion, the assumption that the transition of the pollen
grain be independent on its position at current and past time was im-
plicit. Summing up these observations and completing the description of
the brownian motion with a suitable initial condition we formulate the
following:

Definizione 5 A process B =
(

Ω,F , {Ft}t≥0 , {Bt}t≥0 , P
)

is called
brownian motion if:

1. B0 = 0 almost certainly

2. for all 0 ≤ s ≤ t the random variable Bt − Bs is independent on
Bu for all u ≤ s, and in particular it is independent on Fs;
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3. for all 0 ≤ s ≤ t the random variable Bt−Bs has law N(0, (t−s)I),
where I is the d× d identity matrix.

The first property corresponds to the requirement that the particle starts
its motion at the origin of a suitable reference frame. The second property
is commonly resumed saying that the increments of the brownian
motion are independent of the past, and is strongly related to the
memoryless condition for Markov chains, as it will be soon explained in
detail. The third property makes the introduction of a gaussian transition
probability density rigorous.

As the reader might have observed, so far the stochastic basis of the
brownian motion has not been defined. In fact, no arguments have been
presented to guarantee the existence of a brownian motion: in the previ-
ous definition (5) the requirements formulated in the heuristic introduc-
tion to the brownian motion have just been formulated in the language
of stochastic processes.

To the purpose of proving the existence of the brownian motion, we
first observe that the definition (5) of brownian motion corresponds to
assigning the finite-dimensional laws of the process. We will limit our
treatment to the one-dimensional case d = 1, as the multidimensional
case results from a straightforward generalization left to the reader.

First, we prove that the vector random variable (Bt1 , . . . , Btn) is nor-
mal. By virtue of the second and third property of the brownian motion
the vector random variable (Yt1 , . . . , Ytn) given by:

Yt1 = Bt1 Ytk = Btk − Btk−1
k = 2 . . . n (30)

has independent and normally distributed components with zero mean
and covariance matrix:

∆ =









t1 0 . . . 0
0 t2 − t1 . . . 0
. . . . . . . . . . . .

0 0 . . . tn − tn−1









(31)

Since it is related to the vector random variable (Bt1 , . . . , Btn) by the
linear transformation:









Bt1

Bt2

. . .

Btn









=









1 0 . . . 0
1 1 . . . 0
. . . . . . . . . . . .

1 1 . . . 1

















Yt1
Yt2
. . .

Ytn









= A









Yt1
Yt2
. . .

Ytn









(32)

the former is also normally distributed with covariance matrix:

Γ = A∆AT (33)

Since the covariance matrix Γ is invertible with inverse Γ−1 =
A−1∆−1 (A−1)

T
where, as a simple calculation shows:

A−1 =









1 0 0 . . . 0 0
−1 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . −1 1









(34)
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we can write the finite-dimensional laws of the brownian motion:

µπ (A1 × · · · × An) =

∫

A1

dx1 . . .

∫

An

dxn

exp
(

−1
2

(

∑n
i,j=1 xiΓ

−1
ij xj

))

(2π)n/2 det(Γ)1/2

(35)
where, due to equations (33) and (34), the following simplifications occur:

n
∑

i,j=1

xiΓ
−1
ij xj =

x21
t1

+
n
∑

k=2

(xk − xk−1)
2

(tk − tk−1)
det(Γ) = t1(t2− t1) . . . (tn− tn−1)

(36)
leading to the identity:

µπ (A1 × · · · × An) = (37)

=
∫

A1
dx1 p(x1, t1|0, 0)

∫

A2
dx2 p(x2, t2|x1, t1) . . .

∫

An
dxnp(xn, tn|xn−1, tn−1)

where the transition probability density is given by:

p(y, t|x, s) = 1
√

2π(t− s)
exp

(

−(y − x)2

2(t− s)

)

, s < t (38)

In the multidimensional case one has:

p(y, t|x, s) = 1

[2π(t− s)]d/2
exp

(

−
|y − x|2
2(t− s)

)

, s < t (39)

It is also immediate to realize that the expression (38) implies the three
properties in the definition (5) of brownian motion. The first property is
obvious. The second and third are retrieved choosing n = 2 and A1 = R:

µπ (A2) =

∫

R

dx1 p(x1, t1|0, 0)
∫

A2

dx2 p(x2, t2|x1, t1) (40)

which shows that Bt2 = Bt1 + Bt2 − Bt1 , with the increment Bt2 − Bt1

independent on Bt1 and normally distributed with mean 0 and variance
t2 − t1.

B. Transition Probability and Existence of the Brownian Motion

The definition (5) of brownian motion given above is equivalent to
the assignment of the finite-dimensional laws. The latter present an in-
teresting structure, and involve an object closely recalling the transition
matrices introduced in the context of Markov chains. Consider in fact the
following map, called markovian transition function of the brown-
ian motion:

p(A, t |x, s) def
=

1

[2π(t− s)]d/2

∫

A

dy exp

(

−
|y − x|2
2(t− s)

)

(41)

where s, t ∈ T , s < t, x ∈ R
d and A ∈ B

(

R
d
)

. If s = t, we put instead:

p(A, s |x, s) def
= δx(A) (42)
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Intuitively, we interpret p(A, t |x, s) as the probability that the pollen
grain is in the Borel set A at time t, given the fact that it was at the
point x at time s. Nevertheless we observe that the probability of finding
a particle at a precise point vanishes at any instant s > 0, so that the
map (42) cannot be properly interpreted as conditional probability. On
the other hand, we realize that, by definition, Bt − B0 ∼ N(0, t), and
therefore:

P (Bt ∈ A) = p(A, t |0, 0) = 1

(2πt)d/2

∫

A

dy exp

(

−
|y|2
2t

)

(43)

recalling that, by definition, B0 = 0 almost surely. In general:

P (x+Bt −Bs ∈ A) = p(A, t |x, s) (44)

We now introduce some observations, that will turn out to be useful later
in the discussion:

1. for fixed s, t, A the function x 7→ p (A, t | x, s) is Borel-measurable

2. for fixed s, t, x, the function A 7→ p (A, t | x, s) is a probability
measure on

(

R
d,B

(

R
d
))

;

3. p satisfies the following Chapman-Kolmogorov equation:

p (A, t | x, s) =
∫

Rd

p
(

A, t | y, u
)

p (dy, u | x, s) (45)

for all s < u < t, x ∈ R
dand A ∈ B

(

R
d
)

.

The reader is invited to derive the last equation (45) through a direct
calculation, which is a simple exercise on gaussian integrals.

As proved earlier, the finite-dimensional laws of the brownian motion
are given by:

µπ (A1 × · · · ×An) =

∫

A1

p(dx1, t1 |0, 0)
∫

A2

. . .

∫

An

p(dxn, tn |xn−1, tn−1)

(46)
where π = (t1, . . . , tn), 0 ≤ t1 < · · · < tn. The consistence of these
finite-dimensional laws is an immediate consequence of the Chapman-
Kolmogorov equation.

Kolmogorov’s Theorem (3) ensures the existence of a stochastic pro-
cess:

B =
(

Ω,F , {Ft}t≥0 , {Bt}t≥0 , P
)

(47)

having (46) as finite-dimensional laws, and makes it possible to construct
the stochastic basis for such process. Ω is the set of trajectories:

Ω = {ω : [0,+∞) → R
d} (48)

F the σ-algebra B
(

R
d
)[0,+∞)

, appearing in Kolmogorov’s Theorem, and
Ft = σ (Xs, s ≤ t) the natural filtration. The process is defined by:

Ω ∋ ω  Bt(ω)
def
= ω(t) (49)

8



E. Vitali Lecture 6. Brownian motion

The second Kolmogorov’s Theorem guarantees that a large class of
stochastic processes can be modified in such a way as to be turned into
a continuous process. To prove that the second Kolmogorov’s Theorem
applies to the brownian motion, we consider β = 2n for some integer
n ≥ 2 and t > s:

E
[

|Bt −Bs|β
]

= 1√
2π(t−s)

∫

R
dx x2n exp

(

− x2

2(t−s)

)

= (50)

= 2n√
4π

(t− s)n
∫∞
0
du un+

1

2 exp (−u) = 2n Γ(n+ 1

2)√
4π

(t− s)n = c (t− s)1+α

From now on, we will always assume to work with a continuous brownian
motion.

Finally, it is often useful to chose a larger filtration than the natural
one, so that the stochastic basis:

(

Ω,F , {Ft}t≥0 , P
)

(51)

satisfies the so-called usual hypotheses, that is:

1. the filtration is right continuous, i.e. Ft = Ft+

def
=
⋂

s>tFs

2. each sub-σ-algebra Ft contains all the events of F with vanishing
probability

A simple way to satisfy the usual hypotheses is add to all the σ-algebras
Ft = σ (Xs, s ≤ t) all the events of F with vanishing probability. The
so-obtained filtration is referred to as completed natural filtration.

C. The Martingale Property and the Markov Property

Due to the fact that the increments of the brownian motion are in-
dependent on the past, the stochastic process exhibits the following re-
markable property:

E [Bt|Fs] = E [Bt − Bs +Bs|Fs] =

= E [Bt − Bs|Fs] + E [Bs|Fs] =

= E [Bt − Bs] +Bs = Bs

(52)

where the independence property and the fact that Bs is Fs-measurable
have been recalled. The above equation means that Bs is the best pre-
diction for Bt given the information obtained observing the system up to
time s. The brownian motion is therefore a martingale.

The problem of determining E [f(Bt)|Fs], if f : Rd → R is a limited
Borel function f : Rd → R, has great interest. To this purpose, we will
refer to theorem (??), which we recall here for the sake of clarity:

Teorema 6 Let (Ω,F , P ) be a probability space, G and H mutually inde-
pendent sub-σ-algebras of F . Let X : Ω → E be a G-measurable random
variable taking values in a measurable space (E, E) and ψ a function
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ψ : E × Ω → R E ⊗ H-measurable and such that ω 7→ ψ(X(ω), ω) is
integrable. Then:

E [ψ(X, ·)|G] = Φ(X), Φ(x)
def
= E [ψ(x, ·)] (53)

We know that G ≡ Fs and H ≡ σ(Bt − Bs) are mutually independent,
and that the random variable X ≡ Bs : Ω → E ≡ R

d is G-measurable.
Moreover the function ψ : Rd×Ω → R given by ψ(x, ω) ≡ f(x+Bt(ω)−
Bs(ω)) is H-measurable. The function Φ(x) appearing in theorem (??)
is therefore:

Φ(x) = E [f(x+Bt − Bs))] (54)

and since the random variable ω  x+Bt(ω)−Bs(ω) has law N(x, (t−
s) I):

Φ(x) =
1

[2π(t− s)]d/2

∫

Rd

dy f(y) exp

(

−
|y − x|2
2(t− s)

)

(55)

Theorem (??) implies that:

E [f(Bt)|Fs] = E [f(Bs +Bt −Bs)|Fs] = E [ψ(Bs, ·)|Fs] = Φ(Bs) (56)

(57)

and:

E [f(Bt)|Fs] =
1

[2π(t− s)]d/2

∫

Rd

dy f(y) exp

(

−
|y −Bs|2
2(t− s)

)

(58)

This result is extremely important: the observation of the system up
to time s corresponds to the knowledge of Bs, a circumstance already
reported in Markov chains. In particular, if f = 1A for some A ∈ B(Rd),
the above expression becomes:

P (Bt ∈ A|Fs) = p(A, t |Bs, s) (59)

(59) is referred to as Markov property of the brownian motion. The
importance of this property will be discussed in the following.

III. I PROCESSI DI MARKOV

Moving from the discussion of the previous paragraph, we will now
abstract the general definition of Markov process, which extends to con-
tinuous time and state space the notion of Markov chain, introduced in
the previous chapters. The discussion will begin with the following:

Definizione 7 A markovian transition function on a measurable
space (E, E) is a real-valued function p (A, t | x, s), where s, t ∈ R

+, s ≤ t,
x ∈ E and A ∈ E is such that:

1. for fixed s, t, A the function x 7→ p (A, t | x, s) is E-measurable
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2. for fixed s, t, x the function A 7→ p (A, t | x, s) is a probability
measure on (E, E)

3. p satisfies the following Chapman-Kolmogorov equation:

p (A, t | x, s) =
∫

E

p (A, t | y, u) p (dy, u | x, s) (60)

for all s < u < t, x ∈ E and A ∈ E ;

4. if s = t, p (A, s | x, s) = δx(A) for all x ∈ E.

The reader is invited to observe that p generalizes the n-step transition
matrices of Markov chains.

Definizione 8 Let (E, E) be a measurable space. Given a markovian
transition function p on (E, E) and a probability law µ, we call Markov
process associated to p, with starting point u and initial law µ, a process
X =

(

Ω,F , {Ft}t∈T , {Xt}t∈T , P
)

, with time domain T = [u,+∞) and
state space (E, E), such that:

1. Xu has law µ;

2. the following Markov property holds:

P (Xt ∈ A|Fs) = p(A, t |Xs, s) (61)

almost surely for all A ∈ E and t > s ≥ u.

A deep and surprising relationship between theory of stochastic pro-
cesses and theory of partial differential equation exists. In the remainder
of the present chapter a first discussion providing an insight into this
topic will be raised, and completed once the formalism of stochastic dif-
ferential equations will have been introduced.

A. Semigroup Associated to a Markovian Transition Function

Let p be a markovian transition function on
(

R
d,B(Rd)

)

, which for
the moment will be assumed time-homogeneous, i.e. depending only
on t − s. Denoting through Mb(R

d) the set of real-valued and bounded
Borel functions on R

d and defining the family of operators {Tt}t≥0, Tt :

Mb(R
d) →Mb(R

d) through the position:

(Ttf) (x)
def
=

∫

Rd

dy f(y) p(dy, t | x, 0) (62)

we immediately find that T0 is the identity, and that:

Ts ◦ Tt = Ts+t (63)

11
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To prove (63), let us compute:

((Ts ◦ Tt)f) x) =
∫

Rd dy (Ttf) (y) p(dy, s | x, 0) = (64)

=
∫

Rd dy
∫

Rd dz f(z)p(dz, t | y, 0)p(dy, s | x, 0) =
=
∫

Rd dz f(z)
∫

Rd dyp(dz, s+ t | y, s) p(dy, s | x, 0) =
=
∫

Rd dz f(z) p(dz, s+ t | x, 0) = (Ts+tf) (x)

where the homogeneity of the markovian transition function and the
Chapman-Kolmogorov equation have been recalled. Hence {Tt}t≥0 is a

semigroup of linear operators on Mb(R
d). Let us now define D(A) to

be the set of functions f ∈Mb(R
d) such that for all x ∈ R

d, the following
limit exists:

lim
t→0+

1

t
[(Ttf)(x)− f(x)] (65)

and define:

(Lf)(x) def
= lim

t→0+

1

t
[(Ttf)(x)− f(x)] (66)

The so-defined operator L is called infinitesimal generator of the semi-
group {Tt}t≥0.

If the markovian transition function is not time homogeneous, the
same reasoning leads to a family of operators {Ts,t}s≤t, defined through:

(Ts,tf) (x)
def
=

∫

Rd

dy f(y) p(dy, t | x, s) (67)

Ts,s is the identity, and:

Ts,u ◦ Tu,t = Ts,t, s ≤ u ≤ t (68)

Instead of the operator L a family of infinitesimal generators {Lt}t ap-
pears, defined through the expression:

(Ltf)(x)
def
= lim

h→0+

1

h
[(Tt,t+hf)(x)− f(x)] (69)

whenever it makes sense. In the proceeding we will look for conditions
ensuring the existence of such limits, and we will begin writing:

1

h
[(Tt,t+hf)(x)− f(x)] =

1

h

∫

Rd

dy (f(y)− f(x)) p(dy, t+ h | x, t) (70)

We now assume that for all x and R > 0, denoting through BR(x) the
spherical region of center x and radius R, the following limit holds:

lim
h→0+

p(BR(x)
c, t+ h |x, t)
h

= 0 (71)

which corresponds to asking that the probability of going out a sphere of
arbitrary radius starting from its center in a time interval of width h be
an infinitesimal of order higher than h for h→ 0+. Under the assumption
(71):

lim
h→0+

1

h

∫

BR(x)c
dy (f(y)− f(x)) p(dy, t+ h | x, t) = 0 (72)

12
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since f is limited. Consider now f ∈ Mb(R
d) ∩ C2(Rd), and perform a

Taylor expansion:

f(y)−f(x) =
∑

α

∂f

∂xα
(x)(yα−xα)+

1

2

∑

α,β

∂2f

∂xα∂xβ
(x)(yα−xα)(yβ−xβ)+o(|y−x|2)

(73)
Assuming that for all R e t the following limits exist:

lim
h→0+

1

h

∫

BR(x)

dy (yα − xα) p(dy, t+ h | x, t) def
= bα(x, t) (74)

lim
h→0+

1

h

∫

BR(x)

dy (yα − xα)(yβ − xβ) p(dy, t+ h | x, t) def
= aαβ(x, t) (75)

Observing that o(|y−x|2) ≤ o(R2)
R2 |y−x|2 in BR(x), we find the following

inequality:

limh→0+
1
h

∫

BR(x)
dy o(|y − x|2) p(dy, t+ h | x, t) ≤ (76)

≤ o(R2)
R2 limh→0+

1
h

∫

BR(x)
dy |y − x|2 p(dy, t+ h | x, t) = o(R2)

R2

∑

α aαα(x, t)

that must hold for all R. If we now make R tend to 0, we obtain the
following interesting expression:

(Ltf)(x) =
1

2

d
∑

α,β=1

aαβ(x, t)
∂2f

∂xα∂xβ
(x) +

∑

α

bα(x, t)
∂f

∂xα
(x) (77)

Let us now show that the matrix {aαβ(x, t)}αβ is positive-semidefinite

at each point and instant. Given an arbitrary point x0, fix θ ∈ R
d and

choose a function f such that f(x0) = 0 and, in the spherical neighbor-
hood BR0

(x0) of x0 it is possible to write:

f(x) = −
(

d
∑

γ=1

θγ(xγ − x0,γ)

)2

(78)

Then it is immediate to evaluate:

(Ltf)(x0) = −
d
∑

α,β=1

θαaαβ(x0, t)θβ = lim
h→0+

1

h
[(Tt,t+hf)(x0)− f(x0)]

(79)
Since f(x0) = 0 and furthermore f(x) ≤ 0 for all x ∈ BR0

(x0):

−∑d
α,β=1 θαaαβ(x0, t)θβ = limh→0+

1
h
[(Tt,t+hf)(x0)] = (80)

= limh→0+
1
h

∫

BR0
(x0)

dy (f(y) p(dy, t+ h | x0, t) ≤ 0

that is, the matrix {aαβ(x, t)}αβ is positive semidefinite at each point and
instant.

13
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IV. THE HEAT EQUATION

As shown in the previous paragraph, under suitable condition, to each
Markov process, or equivalently to each markovian transition function, a
differential operator can be associated. In the homogeneous case, which
we consider only for the sake of simplicity, we know that the function
u(x, t) = Ttf(x) satisfies:

∂u

∂t
(x, 0) = lim

h→0

1

h
(Thf(x)− f(x)) = Lf(x) (81)

and that:

∂u

∂t
(x, t) = lim

h→0

1

h
(Tt+hf(x)− Ttf(x)) = TtLf(x) (82)

If it happens that Tt and L commute, the following heat equation
associated to the markovian transition function is found:

{

∂u
∂t
(x, t) = (Lu) (x, t)
u(x, 0) = f(x)

(83)

On the other hand, let q(t, x, y) be the fundamental solution of the heat
equation, i.e. the function satisfying:

{

∂q
∂t
(t, x, y) = (Lq) (t, x, y)
q(0, x, y) = δ(x− y)

(84)

then, from the theory of partial differential equations, it is known that:

u(x, t) =

∫

Rd

dy q(t, x, y)f(y) (85)

But since u(x, t) = Ttf(x), the markovian transition function must be:

p(dy, s+ t |x, s) = q(t, x, y) dy (86)

This observation sheds light on the possibility of inverting this pro-
cess: given a partial differential equation with fundamental solution q,
we might ask ourselves whether it is possible to construct a Markov pro-
cess having a markovian transition function p related to q by (86). As
pointed out before, for this issue to be faced adequately, the formalism
of stochastic differential equations is required.
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