
E. Vitali Lecture 2. Mathematical Statistics

I. STATISTICAL MODELS

One very important environment in which the formalism of probability
theory plays a leading role is the science of extracting information from
data: mathematical statistics. Observations, that is measured data, are
used to infer the values of some parameters necessary to complete a
mathematical description of an experiment.

The simplest situation we can imagine is to measure n-times the same
quantity (or the same set of quantities), performing all the measurements
under the same experimental conditions and in such a way that the result
of any measure does not affect the results of the others. The outcome of
the experiment is thus a collection of data:

(x1 . . . xn) (1)

where xi ∈ R
k is the result of the i-th measure.

Naturally, even if we are very careful in the preparation of the exper-
imental setup, we cannot expect that, if we repeated the whole set of n
measures, we would find the same data (1): some randomness unavoid-
ably exists.

It is thus natural to use the language of probability theory to describe
the experiment. The i-th measure can be modeled by a random variable
Xi, defined on some probability space (Ω,F , P ) and the whole outcome
of the experiment, the data (x1 . . . xn), can be viewed as realizations of
a collection (X1, . . . , Xn) of random variables, independent and iden-
tically distributed. The requirement of independence is suggested by
the assumption that the result of any measure does not affect the re-
sults of the others while the one of identical distribution translates the
idea that the measurements are performed under the same experimental
conditions.

Sometimes, depending on the measurement procedure, one has an idea
about the law of the random variables Xi: in could be Binomial, Poisson,
Exponential, Normal, Uniform and so on. However, in general, the actual
parameters characterizing the law are not known but can be inferred
from the data (x1 . . . xn).

This typical situation justifies the following definition:

Definizione 1 A statistical model is a family:

{(Ω,F , Pθ)}θ∈Θ
of probability spaces sharing the same sample space and the same collec-
tion of events. The probability measures Pθ : F → [0, 1] depend on a
parameter θ taking values in a set Θ ⊆ R

m.

A statistical model describes the preparation procedure of the experi-
ment; the results of the experiment, as anticipated above, are realizations
of a multidimensional random variable:

X = (X1 . . .Xn) (2)
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where the components Xi : Ω → E ⊂ R
k are independent and iden-

tically distributed. Such a random variable X is called a sample of
rank n.

Within a statistical model, the law of Xi, describing the measurement
procedure:

B(Rk) ∋ B  µθ(B) = Pθ(Xi ∈ B) (3)

naturally depends on θ and can be related to a density pθ(x), discrete of
continuous.

As usual in probability theory, the actual precise definition of the
triplet (Ω,F , Pθ) is in general omitted once the law of the sample is
specified.

Some examples of models that are frequently employed are summa-
rized in the following table, in which we indicate the range of the mea-
surements E, the set Θ and the density pθ(x).

model E Θ pθ

Bernoulli {0, 1} (0, 1) θ1−x(1− θ)x

gaussian R R× (0,∞) 1√
2πθ1

e
− (x−θ0)

2

2θ1

exponential (0,∞) (0,∞) θ0 e
−θ0x

All such models are examples of a wide class of models, called s-
parameters exponential models, characterized by densities of the
form:

pθ(x) = e−f
1
(θ)·f

2
(x) e−f3(θ)f4(x) (4)

where f
1
: Θ → R

s, f
2
: Rk → R

s, f3 : Θ → R ed f4 : R
k → [0,∞).

II. ESTIMATORS

One of the main goals of mathematical statistics is to use the data
(x1 . . . xn) to estimate functions τ(θ) of the parameter θ, useful to com-
plete the probabilistic description of the experiment. For this purpose,
suitable functions have to be applied to the data; keeping in mind that
the data are viewed as realizations of a sample, the following definition
is quite natural:

Definizione 2 A statistic T is an s-dimensional random variable of
the form:

Ω ∋ ω  T (ω) = t(X1(ω), . . . , Xn(ω))
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where t : Rk × · · · × R
k → R

s is a measurable function which does not
depend on the parameter θ and (X1 . . .Xn) is a sample of rank n.

The definition (2) of a statistic describes the manipulations we make
to the data. When a statistic T is used to infer a value for a given
function of the parameter θ, τ(θ), we say that T is an estimator of
τ(θ), while t(x1 . . . xn) is called pointwise estimation of τ(θ).

III. THE EMPIRIC MEAN

The most natural statistic one considers when dealing with a set of
data is the mean. Inside our formalism, we build up the estimator M:

M = m(X1 . . .Xn) =

∑n
i=1Xi

n
(5)

for the unknown quantity:

µ(θ) = Eθ(Xi) =

∫

dxxpθ(x)

We start our presentation of mathematical statistics from the analysis of
this estimator, which will help us to introduce some basic notions.

Intuitively, given the set of data (x1, . . . , xn), one would like to write

something like µ(θ) ≃
∑n

i=1 xi

n
.

Let’s give a precise meaning to such an operative procedure.
M is a random variable, with a law depending on the law of the

sample; in particular the expected value is readily computed:

Eθ(M) =

∑n
i=1Eθ(Xi)

n
= µ(θ)

and coincides with µ(θ). So M has expected value equal to the quantity
we wish to infer. This is an important property of the estimator, called
unbiasedness, defined in the following:

Definizione 3 An estimator T of a function τ(θ) is called unbiased if:

Eθ(T ) = τ(θ), ∀θ (6)

What about the “error”? In other words, what do we expect about
the spreading of the realizations of M around the expected value µ(θ)?
This is controlled by the variance of M, which we have already computed
in the chapter of probability. Letting:

σ2(θ) = V arθ(Xi) =

∫

dx(x− µ(θ))2pθ(x)

we have:

V arθ(M) =
σ2(θ)

n

As we have already learnt when studying the law of large numbers, the
following inequality holds:
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Pθ (|M− µ(θ)| > η) ≤ σ2(θ)

nη2

for any η > 0. This means that, provided that the σ2(θ) < +∞ for
all θ, increasing the number of data, i.e. the rank of the sample, the
spreading of M around the expected value µ(θ) becomes smaller and

smaller, making the number
∑n

i=1 xi

n
nearer and nearer to µ(θ) for any

realization of the sample.
This is another useful property of an estimator, consistency, ex-

pressed in general in the following:

Definizione 4 An estimator T of a function τ(θ) is called consistent
if it converges in probability to τ(θ) if the rank of the sample tends to
+∞.

In order to proceed further, we need some assumption about the law of
the Xi. A typical situation, quite always presented in textbooks, is the
case when the Xi are normal with known variance σ2. This can be a
good model if we know a priori the sensibility of a given instrument, and
is given by:

θ  µθ(B) = P (Xi ∈ B) =

∫

B

dx
exp

(

− (x−θ)2

2σ2

)

√
2πσ2

(7)

where the parameter θ ≡ µ(θ) is to be inferred from the data, while σ2

is a fixed parameter, which we assume to know a priori. In such case,
M is normal, being a linear combination of normal random variables. In
particular, we have:

Z =
M− θ
√

σ2

n

∼ N(0, 1) (8)

This means that the statistic M is normally distributed around the un-
known mean θ with a known variance, descreasing with the rank of the
sample. Introducing the quantiles of a standard normal law, we can
write the exact result:

Pθ

(

−φ1−α
2
≤ Z ≤ φ1−α

2

)

= 1− α (9)

or, equivalently:

Pθ

(

M− φ1−α
2

√

σ2

n
≤ θ ≤ M+ φ1−α

2

√

σ2

n

)

= 1− α (10)

It is important to understand the meaning of this equality: let’s fix 1−
α = 0.95 = 95%, the confidence level; in such case, we have to use the
quantile φ1−α

2
= φ0.975 = 1.96. The random interval:

[

M− 1.96

√

σ2

n
,M+ 1.96

√

σ2

n

]

(11)
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contains the unknown expected value θ, with probability 1 − α = 95%:
for that reason, it is called confidence interval at the level 1−α = 95%
for the parameter θ. This is a particular example of the following very
general definition:

Definizione 5 Given two real valued statistics A,B, the random interval
[A,B] is called confidence interval at the level 1 − α ∈ (0, 1) of a
function τ(θ) if:

Pθ(τ(θ) ∈ [A,B]) ≥ 1− α ∀ θ ∈ Θ

To summarize, if our data (x1, . . . , xn) can be modelled with normal
random variables with unknown expected value θ and known variance
σ2, the real number:

x =

∑n
i=1 xi

n
(12)

is a pointwise estimation of θ. Moreover, letting:

δx =

√

σ2

n
(13)

the interval:

[x− 1.96δx, x+ 1.96δx] (14)

is an estimation of a confidence interval at the level 95% for the unknown
θ.

IV. COCHRAN THEOREM AND ESTIMATION OF THE

VARIANCE

A far more general situation emerges in the case that the sample
components are normal with both expectation and variance unknown.

θ = (θ0, θ1) µθ(B) = P (Xi ∈ B) =

∫

B

dx
exp

(

− (x−θ0)2

2θ1

)

√
2πθ1

(15)

We show now how to use the data to estimate the unknown functions
µ(θ) and σ2(θ), and to obtain two intervals in R containing respectively
the two functions with a given confidence level.

Besides the statistic M introduced above, which is an unbiased and
consistent estimator of µ(θ) = θ0, we introduce the following estimator:

S2 = s2(X1 . . .Xn) =

∑n
i=1 (Xi −M)2

n− 1
(16)

of σ2(θ) = θ1. The presence of n − 1 in the denominator makes S2

unbiased, as follows from the following calculation:
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850 740 900 1070 930 850 950 980 980 880

1000 980 930 650 760 810 1000 1000 960 960

960 940 960 940 880 800 850 880 900 840

830 790 810 880 880 830 800 790 760 800

880 880 880 860 720 720 620 860 970 950

880 910 850 870 840 840 850 840 840 840

890 810 810 820 800 477 760 740 750 760

910 920 890 860 880 720 840 850 850 780

890 840 780 810 760 810 790 810 820 850

870 870 810 740 810 940 950 800 810 870

Table I: the 100 measurements of the velocity of light in air by A. Michelson

(1879), from [? ]; the given values plus 299000 are the original measurements

in km/s

Eθ(S2) = Eθ







∑n
i=1X

2
i − n

(∑n
j=1 Xj

n

)2

n− 1






=

=

nEθ(X
2
i )− 1

n
Eθ

(

(

∑n
j=1Xj

)2
)

n− 1
=

=

nEθ(X
2
i )− 1

n

(

V arθ

(

∑n
j=1Xj

)

+
(

Eθ

(

∑n
j=1Xj

))2
)

n− 1
=

=
nEθ(X

2
i )− V arθ (Xi)− n (Eθ (Xi))

2

n− 1
= V arθ(Xi) = σ2(θ)

S2 is also consistent, as can be easily verified using the law of large
numbers. The pointwise estimation of σ2(θ) is thus:

s2(x1 . . . xn) =

∑n
i=1

(

xi −
∑n

j=1 xj

n

)2

n− 1
(17)

In the following we will discover the law of the random variable:

R =
M− θ0
√

S2

n

(18)

which will turn out to follow a Student law with n − 1 degrees of
freedom, and this will allow us to build up confidence intervals for the
mean, θ0.

Moreover, it will turn out that the random variable:
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n− 1

θ1
S2 (19)

follows a chi-square law with n−1 degrees of freedom, allowing to build
up confidence intervals for the variance, θ1.

The rigorous justification of such results relies on the following:

Teorema 6 (Cochran) Let Y = (Y1 . . . Yn) be an n-dimensional nor-
mal random variable, Y ∼ N(0, I). Moreover, let E1 . . . Es be orthogonal
vector subspaces of Rn, such that

⊕s
j=1Ej = R

n. We denote Π1 . . .Πs

the linear projectors onto such subspaces. Then:

1. the random variables ΠjX, j = 1 . . . s, are independent.

2. the random variables |ΠjX|2, j = 1 . . . s, has a chi-square law
χ2(dj), where dj = dim(Ej) is the dimension of Ej.

Proof. Let B = {e1 . . . en} be the canonical base of Rn, and let’s write
Y =

∑n
i=1 Yiei.

Moreover, if B̃1 . . . B̃s are orthonormal basis of the subspaces
E1 . . . Es, the set of vectors B̃ = B̃1 ∪ · · · ∪ B̃s = {ẽ1 . . . ẽn} is an or-
thonormal basis of Rn and we may write Y =

∑n
j=1 Ỹj ẽj where:





Ỹ1

. . .

Ỹn



 =





(ẽ1|e1) . . . (ẽ1|en)
. . . . . . . . .

(ẽn|e1) . . . (ẽn|en)









Y1

. . .
Yn





the matrix Γ with matrix elements Γij = (ẽi|ej) being orthogonal. It

follows that the random variable (Ỹ1 . . . Ỹn) is normal N(Γ0 = 0,ΓIΓτ =
I). é normale con media Γ0 = 0 e matrice di covarianza ΓIΓT = I. Thus,
the components Ỹi are standard normal and independent.

ΠjY =
n
∑

i=1

(ẽi|ΠjY )ẽi =
∑

ẽi∈B̃j

Ỹiẽi

implies that the ΠjY are independent. Finally:

|ΠjY |2 =
∑

ẽi∈B̃j

Ỹ 2
i ∼ χ2(dj)

since the Ỹi are standard normal and independent.

Let’s apply the Cochran theorem to the statistics M and S2. We let:

ẽ1 =





1√
n

. . .
1√
n





and define Ẽ1 as the one-dimensional subspace of R
n spanned by ẽ1.

Moreover, we let Ẽ2 be the orthogonal complement of Ẽ1. Starting from
the sample X = (X1, . . . , Xn), we define the n-dimensional random vari-
able:
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Y =
X − θ0

√
n ẽ1√

θ1
(20)

which, by construction, follows the law Y ∼ N(0, I). Using the notations
of Cochran theorem, we have:

Π1 Y =
M− θ0
√

θ1/n
ẽ1 Π2 Y =

X −√
nM ẽ1√
θ1

We know that Π1 Y and Π2 Y are indipendent. Moreover:

|Π2 Y |2 = 1

θ1

n
∑

i=1

(Xi −M)2 =
(n− 1)S2

θ1
(21)

has a law χ2(n − 1) and is independent on Π1 Y . It follows that the
random variable:

R =

(

M−θ0√
θ1/

√
n

)

√

|Π2 Y |2/(n− 1)
=

M− θ0
√

S2/n
(22)

has a Student law R ∼ t(n− 1) with n− 1 degrees of freedom.
We let t1−α/2(n− 1) be the quantile of order 1− α/2 of the Student

law t(n− 1), defined by the following:

Pθ(R ≤ t1−α/2(n− 1)) = 1− α/2 (23)

Since the Student law is even (R and −R have the same law), we have
tα/2(n− 1) = −t1−α/2(n− 1) and thus we can write:

Pθ(−t1−α/2(n− 1) ≤ R ≤ t1−α/2(n− 1)) = 1− α (24)

We conclude that the random interval:

[M− t1−α/2(n− 1)

√

S2

n
,M+ t1−α/2(n− 1)

√

S2

n
] (25)

is a confidence interval at the level 1 − α for the mean µ(θ) = θ0. If
we replace the estimators with the pointwise estimations, we provide an
estimation for the confidence interval which, using the widely employed
notations:

xbest =

∑n
i=1 xi

n
, δx =

√

∑n
i=1(xi − xbest)2

n(n− 1)

is:

[xbest − t1−α/2(n− 1)δx, xbest + t1−α/2(n− 1)δx]

The most typical choice is the level 95%, which means 1 − α = 0.95,
that is α = 0.05: we have to use the quantile t1−α/2(n−1) = t0.975(n−1),
which, in our case n = 100, is nearly 1.985.
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Nota 7 Quite often, when the rank of the sample in large, in the ex-
pression of confidence intervals one replaces the quantile t1−α/2(n− 1) of
the Student law with the ones of standard normal law φ1−α/2 (naturally
strictly independent on n). In our case such substitution would give a
slightly smaller interval, being φ0.975 = 1.96.

For the variance, we have learnt that:

(n− 1)S2

θ1
∼ χ2(n− 1) (26)

so that:

Pθ

(

χ2
α/2(n− 1) ≤ (n− 1)S2

θ1
≤ χ2

1−α/2(n− 1)

)

= 1− α (27)

where we have introduced the quantiles of the χ2(n−1). We can rewrite
the above expression in the following way:

Pθ

(

(n− 1)S2

χ2
1−α/2(n− 1)

≤ θ1 ≤
(n− 1)S2

χ2
α/2(n− 1)

)

= 1− α (28)

which shows that:

[

(n− 1)S2

χ2
1−α/2(n− 1)

,
(n− 1)S2

χ2
α/2(n− 1)

]

(29)

is a confidence interval at the level 1− α for σ2(θ) = θ1.
Typically, when a sample has rank n > 30, the following approxima-

tion turns out to be very accurate:

χ2
1−α/2(n− 1) ≃ 1

2

(

φ1−α/2 +
√

2(n− 1)− 1
)2

(30)

where φ1−α/2 is the quantile of the standard normal law. In our case, at
the level 95%, α = 0.05, we have:

χ2
1−α/2(n− 1) ≃ 129.07, χ2

α/2(n− 1) ≃ 73.77 (31)

so that the confidence interval is [0.77S2, 1.36S2].

A. Estimation of a proportion

Let’s assume now that the sample X = (X1, . . . , Xn) is made of
Bernoulli random variables with parameter θ ∈ (0, 1). We know that:

Eθ(Xi) = θ, V arθ(Xi) = θ(1− θ)

so that the random variable:

M = m(X1 . . .Xn) =

∑n
i=1Xi

n
(32)
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is an unbiased estimator for θ, that is:

Eθ(M) = θ

Moreover, for large n, the law of:

M− θ
√

θ(1− θ)/n
(33)

can be approximated by a law N(0, 1), for the central limit theorem. We
can thus write:

Pθ

(

−φ1−α
2
≤ M− θ
√

θ(1− θ)/n
≤ φ1−α

2

)

≃ 1− α (34)

where, as before, φ1−α
2
are the quantiles of the standard normal N(0, 1).

We can rewrite the above formula as:

P θ

(

M− q1−α
2

√

θ(1 − θ)√
n

≤ θ ≤ M+ q1−α
2

√

θ(1− θ)√
n

)

≃ 1− α

In order to build up a confidence interval at the level 1 − α for the
parameter θ we should solve the inequality:

−φ1−α
2
≤ M− θ
√

θ(1− θ)/n
≤ φ1−α

2

with respect to θ, which is a simple exercise which we leave to the reader.
In general, when n is large enough, the resulting confidence interval can
be accurately approximated as:

[

M− φ1−α
2

√

M(1−M)√
n

,M+ φ1−α
2

√

M(1−M)√
n

]

(35)

V. CRAMER-RAO THEOREM

We have learnt till now to build up estimators T for functions τ(θ), in
particular for the mean and the variance, inside a given statistical model.
We have seen that some nice properties of an estimator are unbiasedness
and consistence. We are going now to explore more deeply the quality of
an estimator. Naturally, the precision of our estimation will depend on
the variance of T , or, in higher dimensions, on its covariance matrix.

We start limiting our attention to real valued estimators and to a one
dimensional parameter θ. Later we will generalize to higher dimensions.

We fix some working ipothesis, which are satisfied by a wide class of
statistical models, including the exponential ones. First of all, we aus-
sume that the real valued components Xi of the sample (X1 . . .Xn) have
densiy pθ(x), which we ask to be differentiable with respect to the pa-
rameter θ. Moreover, we assume that, for any statistic T = t(X1 . . .Xn),

10
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integrable with respect to the density pθ(x1) . . . pθ(xn), we can exchange
integration and differentiation:

∂

∂θ

[

Eθ[T ]
]

=

∫

dx1 . . . dxn t(x1 . . . xn)
∂

∂θ

[

pθ(x1) . . . pθ(xn)
]

A simple manipulation of the above identity leads to the following:

∂

∂θ

[

Eθ[T ]
]

= Eθ [T S] (36)

where we have introduced the score function:

S =
1

pθ(X1) . . . pθ(Xn)

∂

∂θ

[

pθ(X1) . . . pθ(Xn)
]

=
∂

∂θ
log
[

pθ(X1) . . . pθ(Xn)
]

which measures the sensibility of the density pθ(x) with respect to the
parameter θ.

The score function statistic has zero mean, as can be proved by using
T = 1 in the identity (36):

∂

∂θ

[

Eθ[1]
]

= 0 = Eθ [S] (37)

The average sensibility is thus measured by the variance of the score
function, which is called Fisher Information number:

I(θ) = Eθ

[

S2
]

= Eθ

[

(

∂

∂θ
log
[

pθ(X1) . . . pθ(Xn)
]

)2
]

≥ 0

We will show now that such Fisher information number is related to the
maximum precision we can expect for one estimator.

We consider now an estimator T = t(X1, . . . , Xn) of a quantity τ(θ).
If the estimator is unbiased, we have:

τ(θ) = Eθ[T ] =

∫

dx1 . . . dxn t(x1 . . . xn)
[

pθ(x1) . . . pθ(xn)
]

(38)

and, by construction:

dτ(θ)

dθ
= Eθ [T S] = Eθ [(T − τ(θ))S] = Cov [T ,S] (39)

where we have use the fact that the score function has zero mean. We
can use now Cauchy-Schwartz inequality, implying that:

∣

∣

∣

∣

dτ(θ)

dθ

∣

∣

∣

∣

2

= |Cov [T ,S] |2 ≤ V ar(T )V ar(S) (40)

so that:

V arθ(T ) ≥ |dτ(θ)
dθ

|2
I(θ)

(41)
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This is a very important inequality, due to Cramer-Rao. We stress
that the Fisher information number is a property of the statistical model,
and not of the estimator: nevertheless, it imposes a lower bound to the
variance of estimators that can be built up. Naturally, the smallest is
the variance, the highest is the precision of the estimation: I(θ) controls
the precision of the estimators.

Definizione 8 An estimator T of a quantity τ(θ) is called efficient if:

V arθ(T ) =
|dτ(θ)

dθ
|2

I(θ)
(42)

Let’s consider an instructive example: let’s assume that the compo-
nent of the sample Xi are normal with unknown mean θ and known
variance σ2. We have:

(

∂

∂θ
log
[

pθ(X1) . . . pθ(Xn)
]

)2

=





n
∑

i=1

∂

∂θ
log





exp
(

− (Xi−θ)2

2σ2

)

√
2π σ









2

=

=

(

n
∑

i=1

∂

∂θ

(

−(Xi − θ)2

2σ2
− log(

√
2π σ)

)

)2

=

(

n
∑

i=1

Xi − θ

σ2

)2

We get thus, exploiting independence, the following result for the
Fisher information:

I(θ) = Eθ





(

n
∑

i=1

Xi − θ

σ2

)2


 = nV arθ

(

Xi − θ

σ2

)

= nEθ

[

(

Xi − θ

σ2

)2
]

=
n

σ2

(43)
independent on θ. On the other hand, if we consider the estimator:

M = m(X1 . . .Xn) =

∑n
i=1Xi

n
(44)

of τ(θ) = θ (whose derivative is one!), we already know that:

V ar(M) =
σ2

n
=

1

I(θ)
(45)

so that M is an efficient estimator of the mean: keeping fixed the statis-
tical model, it is not possible to build up an estimator for the mean with
variance lower than σ2

n
.

We present now the general statement of the Cramer-Rao theorem.

Teorema 9 (Cramer, Rao) Let {(Ω,F , Pθ)}θ∈Θ a statistical model
and X = (X1 . . .Xn) a sample of rank n such that the following ipothesis
hold:

1. the law of the components Xi of the sample (X1 . . .Xn) has densiy
pθ(x)

12
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2. pθ(x) is differentiable with respect to θ

3. for any s-dimensional statistic T = t(X1 . . .Xn) we can write:

∂

∂θ

[

Eθ(Ti)
]

=

∫

dx1 . . . dxn ti(x1 . . . xn)
∂

∂θ

[

pθ(x1) . . . pθ(xn)
]

If T is an estimator of the quantity τ(θ) with finite expectation Eθ(T ),
then the following matrix inequality holds:

covθ(T ) ≥ J(θ)I−1(θ)J(θ)T (46)

where J(θ) is the Jacobian of Eθ(T ):

Jik(θ) =
∂Eθ(Ti)

∂θk
(47)

and I(θ) is the Fisher Information matrix:

Iij(θ) = Eθ (Si(X1 . . .Xn)Sj(X1 . . .Xn))

the score vector being defined by:

S(X1 . . .Xn) =
∂

∂θ
log
[

pθ(X1) . . . pθ(Xn)
]

Proof. Using the constant statistic T = 1, we see that the components
of the score vector have zero mean. We introduce the matrix:

Aik = Eθ

(

(

Ti − Eθ(Ti)
)

Sk

)

= Eθ

(

Ti Sk

)

(48)

Moreover, by inspection we see that:

Eθ

(

Ti Sk

)

=
∂Eθ(Ti)

∂θk
= Jik(θ) (49)

This implies that, for each couple of vectors a ∈ R
s, b ∈ R

m:

(a|A|b) = (a|J(θ)|b) (50)

The left hand side has the explicit form:

(a|A|b) =
s
∑

i=1

m
∑

j=1

aiAijbj = Eθ

(

(a|T − Eθ(T )) (S|b)
)

Hölder inequality implies:

(a|A|b)2 ≤ E
(

(a|T − Eθ(T ))2
)

E
(

(S|b)2
)

that is:
(a|A|b)2 ≤ (a|covθ(T )|a) (b|I(θ)|b) (51)

Finally:
(a|J(θ)|b)2 = a|A|b)2 ≤ (a|covθ(T )|a) (b|I(θ)|b)

Choosing b = I(θ)−1J(θ)Taand using the symmetry of Fisher information
matrix (and of its inverse), we find:

(a|J(θ)|b)(a|J(θ)I(θ)−1J(θ)T |a) ≤ (a|covθ(T )|a) (a|J(θ)|b)
that is:

(a|covθ(T )|a) ≥ (a|J(θ)I(θ)−1J(θ)T |a)

13
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A. Maximum likelihood estimators (MLE)

We have till now learnt some useful properties of estimators, deter-
mining their precision in inferring τ(θ) from a set of data. A natural
question is whether there exist a tool to invent an estimator for a partic-
ular τ(θ). In the case of mean and variance the actual definition of the
estimator is very natural, but there can be situations in which the choice
is not so simple. We limit our attention to the case when the quantity
τ(θ) to be estimated is the parameter θ itself. We assume moreover that
the components of the sample (X1 . . .Xn) have density pθ(x).

Given the data (x1 . . . xn) let’s consider the likelihood function:

L(θ; x1 . . . xn)
def
= pθ(x1) . . . pθ(xn) (52)

Intuitively, “L(θ; x1 . . . xn)dx1 . . . dxn” is the probability to obtain pre-
cisely the measured data for the value θ of the parameter. We are nat-
urally induced to estimate the unknown parameter as the value θ which
maximizes such probability. This justifies the following:

Definizione 10 We call maximum likelihood estimator (MLE) of
the parameter θ the statistic:

θ̃ML(X1 . . .Xn) = arg max
θ∈Θ

L(θ;X1 . . .Xn) (53)

We observe that such estimator is well defined whenever, for the given
data, the function θ  L(θ; x1 . . . xn) has a unique maximum.

In order to give a first example, let’s consider again the normal sample
with unknown mean θ and known variance σ2. In such case:

L(θ;X1 . . .Xn) =
1

(2πσ2)n/2
exp

(

−
n
∑

i=1

(Xi − θ)2

2σ2

)

(54)

The maximization of such function with respect to θ leads to the following
equation:

0 =
∂

∂θ

(

−
n
∑

i=1

(Xi − θ)2

)

= 2
n
∑

i=1

(Xi − θ)

which implies:

θ̃ML(X1 . . .Xn) =

∑n
i=1Xi

n

which is exactly the empirical mean.
The MLE for some important models are summarized in the following

table:

14
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model θ̃ML Eθ(θ̃ML) covθ(θ̃ML) I(θ)

bernoulli
∑n

i=1 Xi

n
θ θ(1−θ)

n
n

θ(1−θ)

gaussian





∑n
i=1 Xi

n∑n
i=1 X

2
i

n
−
(∑n

i=1 Xi

n

)2





(

θ0
n−1
n

θ1

) (

θ1
n

0
0 n−1

n2 2θ21

) ( n
θ1

0

0 n
2θ21

)

exonential n∑n
i=1 Xi

n
n−1

θ n2

(n−1)2(n−2)
θ2 n

θ2

We observe that the MLE may be not unbiased nor efficient, but they
asyntotically have these properties in the limit of large samples.

The following theorems, which we state without proof, provide general
results about MLEs. The first result concernes existence of MLEs.

Teorema 11 (Wald) If:

1. Θ is compact.

2. for each x the density pθ(x) is a continuous function of θ.

3. pθ(x) = pθ′(x) if and only if θ = θ′

4. there exists a positive function K : Rk → R, such that the random
variable K(Xi) has finite expectation and such that, for each x and
θ:

∣

∣

∣

∣

log

[

pθ(x)

pθ′(x)

]∣

∣

∣

∣

≤ K(x) (55)

Then there exist a maximum likelihood estimator θ̃ML(X1 . . .Xn) that
converges almost surely to θ as the rank of the sample increases to +∞.

A strongest result is the following:

Teorema 12 (Cramer) If:

1. Θ is open.

2. for each x, pθ(x) ∈ C2(Θ), and it is possible to exchange derivative
and expectation.

3. pθ(x) = pθ′(x) if and only if θ = θ′

4. there exists a function K(x) such that K(Xi) has finite expectation
and:

‖∇θ log
(

pθ(x)
)

‖ ≤ K(x) (56)

for each x ∈ R
k.
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Then ther exists a maximum likelihood estimator θ̃ML(X1 . . .Xn) that
converges almost surely to θ as the rank of the sample increases to +∞,
and that is asyntotically normal and efficient:

θ̃ML(X1 . . .Xn)
a.s.−−−→

n→∞
θ

lim
n→∞

√
n
[

θ̃ML(X1 . . .Xn)− θ
]

= N
[

0, I(θ)−1
]

(57)

VI. HYPOTHESIS TESTS

A typical problem in mathematical statistics is to use the data to
confirm or reject an ipothesis relying on a set of data. Once fixed a
statistical model, an ipothesis is a statement about the parameter θ. In
practice, the statistical ipothesis to be tested, called the null ipothesis
H0 (that in general the tester tries to reject) can be expressed as:

H0 : θ ∈ Θ0 (58)

while the alternative ipothesis H1, (that in general the tester tries to
establish) can be expressed as:

H1 : θ ∈ Θ1 = Θ−Θ0 (59)

We start from the data (x1 . . . xn). Performing a statistical test means
choosing a subset ΩR ⊂ R

k × · · · ×R
k, called critical region, such that

we reject the null ipothesis if (x1 . . . xn) ∈ ΩR:

(x1 . . . xn) ∈ ΩR ⇒ reject H0 (60)

In such case the conclusion is that H0 is not consistent with the data.
Naturally, the randomness in the experiment can leads to errors: if we
reject H0 when H0 is true, we say we do a type I error; on the other
hand, if we do not reject H0 when H0 is false, we say that we do a type
II error.

In most cases, the critical region is expressed in term of a statistic
T = t(X1, . . . , Xn), in the form:

ΩR = {(x1 . . . xn) : t(x1 . . . xn) > T0}
for a given treshold value T0.

A. Student test

One very common experimental situation is the comparison between
the mean of a measured quantity and a reference value, maybe coming
from a theoretical study. We assume that the data (x1 . . . xn) can be
modeled as realization of a sample (X1 . . .Xn), with one dimensional
normal components. Introducing the statistics M and S2, respectively
estimators of mean µ(θ) and variance σ2(θ), we already know that:

16
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R = r(X1, . . . , Xn) =
M− µ(θ)
√

S2

n

(61)

follows a Student law with n− 1 degrees of freedom.
We denote µ0 the reference value. We test the ipothesis:

H0 : µ(θ) = µ0 (62)

against:

H1 : µ(θ) 6= µ0 (63)

Naturally we will reject H0 if the estimated mean is far from µ0. If the
null ipothesis H0 is true, we can calculate:

Pθ





∣

∣

∣

∣

∣

∣

M− µ0
√

S2

n

∣

∣

∣

∣

∣

∣

> t1−α
2
(n− 1)



 = α

for any α ∈ (0, 1). At the significance level α, we can define the critical
region as:

ΩR = {(x1 . . . xn) : |r(x1 . . . xn)| > t1−α
2
(n− 1)}

Typically chosen values are α = 0.10, 0.05, 0.01, corresponding, for large
samples, to the quantiles 1.645, 1.96, 2.58. We note that α is precisely
the probability of type I error.

Given the data (x1 . . . xn), we can thus imediately calculate the stan-
dardized discrepancy with respect to the reference value: r(x1 . . . xn).
We can also, using the Student law or the normal if the sample is large
enough, compute the p value:

p value = Pθ





∣

∣

∣

∣

∣

∣

M− µ0
√

S2

n

∣

∣

∣

∣

∣

∣

> r(x1 . . . xn)



 (64)

under the assumption that H0 is true. If the p value is less than or
equal to the significance level α, H0 is rejected at the significance level α;
the p value is the probability to find data worse than the ones we have
measured if H0 is true. A small p value means that is very unlikely that
H0 is consistent with the data.

Another important class of ipothesis that are often tested have the
form:

H0 : µ(θ) ≤ µ0 (65)

Naturally, the alternative is:

H1 : µ(θ) > µ0 (66)

It is clear that we will reject the null ipothesis if we get a mean much
bigger than µ0. In order to be quantitative, we observe that:

R =
M− µ0
√

S2

n

=
M− µ(θ)
√

S2

n

+
µ(θ)− µ0
√

S2

n

(67)
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is the sum of a Student random variable t(n − 1) and a term which is
always negative if H0 is true. Thus:

Pθ (R > t1−α(n− 1)) ≤ Pθ





M− µ(θ)
√

S2

n

> t1−α(n− 1)



 = α

and we may set the critical region:

ΩR = {(x1 . . . xn) : r(x1 . . . xn) > t1−α(n− 1)}

defines a statistical test of the ipothesis (65) whose probability of I type
error is α.

In several situations two different estimations of averages of inde-
pendent normal samples X = (X1 . . .Xn) and Y = (Y1 . . . Ym) are
compared. We will limit our attention to the situation in which the two
independent samples share the same value for the variance.

In the simplest case, the hypothesis that the two means are equal:

H0 : µX(θ) = µY (θ) (68)

is tested against the alternative:

H1 : µX(θ) 6= µY (θ) (69)

Using Cochran theorem, it is simple to show that, if H0 is true, the
random variable:

T =
MX −MY

√

1
n
+ 1

m

√

(n−1)S2
X
+(m−1)S2

Y

n+m−2

follows a Student law with n+m−2 degrees of freedom t(n+m−2). The
above notation is precisely the same we have used throughout this chapter
a part from a label to distinguish the two samples: MX = 1

n

∑n
i=1Xi

and so on. We have thus:

Pθ

(

|T | > t1−α
2
(n +m− 2)

)

= α (70)

providing a critical region at the significance level α of the form:

ΩR = {(x1 . . . xn; y1 . . . ym) : |t| > t1−α
2
(n− 1)}

where t = T (x1 . . . xn; y1 . . . ym). Intuitively, if the two estimations of the
means turn out to be “too different”, we reject the hypothesis.

If we have to test the hypothesis:

H0 : µX(θ) ≤ µY (θ) (71)

we rely on the observation that:

T =
MX −MY

√

1
n
+ 1

m

√

(n−1)S2
X
+(m−1)S2

Y

n+m−2

=
(MX − θ0X)− (MY − θ0Y )
√

1
n
+ 1

m

√

(n−1)S2
X
+(m−1)S2

Y

n+m−2

+
θ0X − θ0Y

√

1
n
+ 1

m

√

(n−1)S2
X
+(m−1)S2

Y

n+m−2
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is the sum of a random variable with law t(n+m−2) and a term which,
if H0 is true, is always negative or equal to zero. Therefore:

Pθ (T > t1−α(n +m− 2)) = α (72)

and the critival region for a test at the significance level α is:

ΩR = {(x1 . . . xn; y1 . . . ym) : t > t1−α(n+m− 2)}

where t = T (x1 . . . xn; y1 . . . ym).

B. Chi-Squared test

The Chi-Squared test, or Goodness-of-Fit test, due to Pearson,
is a test of the ipothesis:

H0 : θ = θ0

aiming to verify whether the probability density pθ0(x), specified by the
value θ0 of the parameter, is a good description of the experiment we have
made, given a set of data (x1 . . . xn). The starting point is a partition
of the range of the measurements, R

k, in a finite family {Ej}rj=1 of

outcomes, mutually disjoint such that
⋃r

j=1Ej = R
k. The basic idea of

the test is to compare the theoretical frequencies:

pj(θ0) = Pθ0
(Xi ∈ Ej) =

∫

Ej

dx pθ0(x)

with the empirical frequencies:

fj =

∑n
i=1 1Ej

(xi)

n

giving the number of measurements fallen in the set Ej .
As usual, we interpret the numbers fj as realizations of the statistics:

Nj = nj(X1 . . .Xn) =

∑n
i=1 1Ej

(Xi)

n

The discrepancy between theoretical and empirical frequencies builds up
the Pearson random variable:

P = p(X1, . . . , Xn) =

r
∑

j=1

n
(Nj − pj(θ0))

2

pj(θ0)
(73)

The key result is the following, which we will prove at the end of this
section:

Teorema 13 If the ipothesis:

H0 : θ = θ0

is true, the Pearson random variable converges in distribution to a ran-
dom variable χ2(r − 1), as the rank of the sample tends to +∞.
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Thus, assuming H0 true, if the sample is large enough, we have:

Pθ0

(

P ≥ χ2
1−α(r − 1)

)

= α (74)

so that we can define the critical region for the test of H0 at the signifi-
cance level α.

ΩR =
{

(x1 . . . xn) : p(x1 . . . xn) > χ2
1−α(r − 1)

}

(75)

Let’s now prove the basic theorem (13). Keeping in mind the idea
of dealing with samples with arbitrary size, We consider the sequence of
r-dimensional random variables:

Zn =
√
n
(

N − p(θ0)
)

where:

N =





n1(X1 . . .Xn)
. . .

nr(X1 . . .Xn)



 p(θ0) =





p1(θ0)
. . .

pr(θ0)





The definition:

N =
1

n

n
∑

i=1





1E1(Xi)
. . .

1Er
(Xi)





guarantees that N is the empirical mean of n random variables indepen-
dent and identically distributed with mean:

Eθ









1E1(Xi)
. . .

1Er
(Xi)







 = p(θ0)

and covariance matrix:

Σjk = Eθ0

(

1Ej
(Xi)1Ek

(Xi)
)

−Eθ0

(

1Ej
(Xi)

)

Eθ0
(1Ek

(Xi)) =

= δjk pj(θ0)− pj(θ0) pk(θ0)

The multidimensional central limit theorem guarantees thus that:

lim
n→∞

Zn = N(0,Σ)

We observe now that the Pearson random variable may be expressed as
an inner product in R

r:

P = (AZn|AZn)

where A ∈ Mr×r(R) is the diagonal matrix:

A = diag

(

1
√

p1(θ0)
. . .

1
√

pr(θ0)

)

(76)

Using the identities:

Eθ0
(AZn) = AEθ(Zn) = 0 cov(AZn) = Acov(Zn)A

T
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we conclude that:
lim
n→∞

AZn = N(0, AΣAT )

Performing the product of matrices we get:

(AΣAT )jk = δjk −
√

pj(θ0)
√

pk(θ0)

By inspection we see that AΣAT is a projection matrix of rank:

rg(AΣAT ) = tr(AΣAT ) =
∑

k

(AΣAT )kk = r − 1

There exists thus an orthogonal matrix U ∈ Mr×r(R) such that:

AΣAT = U diag(1 . . . 10)UT ≡ U ∆UT

The sequence UAZn converges thus in distribution to a random variable
N(0,∆), whose components are independent: the first r − 1 follow a
standard normal, the last one is the constant 0.

The sequence (UAZn|UAZn) converges thus in law to a χ2(r−1) and:

lim
n→∞

P = lim
n→∞

(AZn|AZn) = lim
n→∞

(UAZn|UAZn) ∼ χ2(r − 1) (77)

This completes the proof.

C. Kolmogorov-Smirnov test

The weak point of the Pearson χ2 test is the necessity of introducing
the partition {Ej}rj=1 of the outcomes, which is quite arbitrary. In this
section we will describe a different approach due to Kolmogorov and
Smirnov. The aim is again to test the hypothesis:

H0 : θ = θ0

We will assume to deal with a sample (X1 . . .Xn) made of one-
dimensional random variables with cumulative distribution function Fθ :
R → [0, 1] that is continuous and stricty increasing for all θ.

We introduce now the empirical cumulative distribution func-
tion of the sample:

F̃n(x) =
1

n

n
∑

i=1

Θ(x−Xi)

F̃n(x), for all x ∈ R, is a random variable counting the number of out-
comes smaller or equal to x. The following calculation shows that F̃n(x)
is an unbiased and consistent estimator of the “true” cumulative distri-
bution function Fθ:

Eθ[F̃n(x)] =
1

n

n
∑

i=1

Eθ[Θ(x−Xi)] = Pθ(X ≤ x) = Fθ(x)

varθ[F̃n(x)] =
1

n2

n
∑

ij=1

Eθ[Θ(x−Xi)Θ(x−Xj)]− Fθ(x)
2 =

Fθ(x)(1− Fθ(x))

n
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Moreover, we are going now to show the following important result:

Teorema 14 (Glivenko-Cantelli) The Kolmogorov-Smirnov ran-
dom variable:

sup
x∈R

|F̃n(x)− Fθ(x)|

converges in probability to zero, that is:

lim
n→∞

Pθ

(

sup
x∈R

|F̃n(x)− Fθ(x)| ≤ ǫ
)

= 1

∀ ǫ > 0.
Proof. Let’s fix ǫ > 0, choose k ∈ N, k ≥ 1

2ǫ
and consider the points

xj = F−1
θ

(

j
k

)

with j = 0 . . . k. Then:

Fθ(xj+1)− Fθ(xj) =
j + 1

k
− j

k
=

1

k
≤ ǫ

As we have observed above, in each point xj the empirical cumulative

distribution function F̃n(xj) converges in probability to Fθ(xj). Then the
random variable:

∆k = max
j=0...k

|F̃n(xj)− Fθ(xj)|

converges in probability to zero. Since ∀ x ∈ R there exists one and only
one j such that x ∈ [xj−1, xj) we can write:

F̃n(x)− Fθ(x) ≤ F̃n(xj)− Fθ(xj−1) = F̃n(xj)− Fθ(xj) + Fθ(xj)− Fθ(xj−1)

|F̃n(x)− Fθ(x)| ≤ |F̃n(xj)− Fθ(xj)|+ |Fθ(xj)− Fθ(xj−1)| ≤ ∆k + ǫ

The fact that the last member is independent of x allows to write:

sup
R

|F̃n(x)− Fθ(x)| ≤ ∆k + ǫ

which implies:

Pθ

(

sup
x∈R

|F̃n(x)− Fθ(x)| ≤ 2ǫ
)

≥ Pθ

(

∆k + ǫ ≤ 2ǫ
)

= Pθ

(

∆k ≤ ǫ
)

This completes the proof since ∆k converger in probability to zero:

lim
n→∞

Pθ

(

sup
R

|F̃n(x)− Fθ(x)| ≤ 2ǫ

)

≥ 1

Let’s consider now the random variable:

√
n sup

x∈R
|F̃n(x)− Fθ(x)| =

√
n sup

x∈R
| 1
n

n
∑

i=1

Θ(x−Xi)− Fθ(x)|

for the given sample. Since Fθ is invertible by construction, we can write:
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√
n sup

R

|F̃n(x)−Fθ(x)| =
√
n sup

[0,1]

∣

∣

∣
F̃n(F

−1
θ (t))− t

∣

∣

∣
= sup

[0,1]

∣

∣

∣

∣

∣

1√
n

n
∑

i=1

Θ(t− Fθ(Xi))−
√
nt

∣

∣

∣

∣

∣

Now, let’s define:

B̃
(n)
t =

1√
n

n
∑

i=1

Θ(t− Fθ(Xi))−
√
nt

The key point is that Fθ(X1), . . . , Fθ(Xn) are independent and uniform
in (0, 1), as we have shown in the first chapter. It is immediate to see
that:

B̃
(n)
0 = B̃

(n)
1 = 0

Moreover:

E
[

B̃
(n)
t

]

=
1√
n

n
∑

i=1

∫ 1

0

duΘ(t− u)−√
nt = 0

and, if s < t:

E
[

B̃
(n)
t B̃(n)

s

]

=
1

n

∑

i

∫ 1

0

duΘ(t− u)Θ(s− v)du+

+
1

n

n
∑

i 6=j=1

∫ 1

0

du

∫ 1

0

dvΘ(t− u)Θ(s− v) + nts+

− s

n
∑

i=1

∫ 1

0

duΘ(t− u)− t

n
∑

i=1

∫ 1

0

dvΘ(s− v) =

= s+ (n− 1)ts+ nts− nts− nts =

= s(1− t)

Finally, the central limit theorem guarantees that B̃t, in the limit n →
+∞ becomes normal. When we will introduce the theory of stochastic
processes, we will call the process:

B̃t = lim
n→+∞

B̃
(n)
t

brownian bridge. We have thus shown that:

lim
n→∞

√
n sup

R

|F̃n(x)− Fθ(x)| = sup
[0,1]

|B̃(t)| (78)

where B̃(t) is a brownian bridge. This is very useful since the following
technical result, of which we will omit the proof, holds:

P
(

sup
[0,1]

|B̃(t)| ≤ x
)

= 1− 2
∞
∑

k=1

(−1)k−1e−2k2x2

(79)

23



E. Vitali Lecture 2. Mathematical Statistics

Table II: quantiles D1−α of the random variable sup[0,1] |B̃(t)|

1− α D1−α

0.99 1.627

0.98 1.518

0.95 1.358

0.90 1.222

0.85 1.138

0.80 1.073

The reader may refer to the following table of the quantiles of the random
variable sup[0,1] |B̃(t)|:

The critical region of the Kolmogorov-Smirnov test is:

ΩR =

{

(x1 . . . xn) :
√
n sup

R

|F̃n(x)− Fθ0
(x)| > D1−α

}

(80)

Given the data, the tester, assuming that θ = θ0 evaluates the empir-
ical cumulative distribution function F̃n(x) and finds the real number√
n sup

R
|F̃n(x) − Fθ0

(x)|; if such positive number is bigger than D1−α,
the tester rejects the hypothesis at the significance level α.

D. Estimators of covariance and correlation

During experiments a very important issue is the existence of corre-
lations among different quantities that are measured. Let’s consider the
the simplest situation, when only two quantities are measured: this re-
sults into two sets of data, (x1 . . . xn) and (y1 . . . yn), which we view as
realizations of two samples (X1 . . .Xn) e (Y1 . . . Yn).

We wish to estimate the covariance:

covθ(XiYi) = Eθ(XiYi)− Eθ(Xi)Eθ(Yi) = µXY (θ)− µX(θ)µY (θ) (81)

Let’s define the estimator:

C =
n

n− 1
MXY (X1Y1 . . .XnYn)−

n

n− 1
MX(X1 . . .Xn)MY (Y1 . . . Yn) =

=
1

n− 1

n
∑

i=1

XiYi −
1

n(n− 1)

(

n
∑

i=1

Xi

) (

n
∑

i=1

Yi

)

(82)

This is an unbiased estimator for µXY (θ)−µX(θ)µY (θ), as can be seen
from the following calculation:

Eθ (C) =
∑n

i=1Eθ(XiYi)

n− 1
−
∑n

ij=1Eθ(XiYj)

n(n− 1)
=

=Eθ(XiYi)− Eθ(Xi)Eθ(Yi) = µXY (θ)− µX(θ)µY (θ)

Moreover, the law of large numbers guarantees that C is also consistent.
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A very interesting quantitative information about correlation, very
often used in data analysis, is the Pearson correlation coefficient:

ρ(θ) =
µXY (θ)− µX(θ)µY (θ)

√

σ2
X(θ) σ

2
Y (θ)

which is a real number, −1 ≤ ρ(θ) ≤ 1, is zero if the quantities are non
correlated and reaches the value±1 when there exists a linear relationship
between the two quantities.

A typical estimator for ρ(θ) is:

R =
MXY −MXMY

√

S2
X S2

Y

(83)

This natural estimator is a quite complicated function of the samples: it
is highly non trivial to evaluate its expectation or to build up confidence
intervals. It is useful to introduce here a well established technique, the
propagation of errors, which will help us to study the estimator R. The
first observation is that:

R = g (MX ,MY ,MX2 ,MY 2,MXY )

where:

g(x1, x2, x3, x4, x5) =
x5 − x1x2

√

(x3 − x2
1)(x4 − x2

2)

and we know the properties of the statisticsMX ,MY ,MX2 ,MY 2,MXY .
What can we learn about R?

The approach we will follow relies on the important theorem:

Teorema 15 (Propagation of errors) Let {Zn}∞n=0 be a sequence of
k dimensional random variables converging almost surely to a constant
vector z ∈ R

k and such as the sequence:

Zn − z

1/
√
n

(84)

converges in distribution to a normal random variable N(0,Σ) for a given
matrix Σ.

If g : Rk → R is a function of class C1 in a neighborhood of z, then
the sequence:

g(Zn)− g(z)

1/
√
n

(85)

converges in distribution to a normal random variable
N(0,∇g(z) Σ∇g(z)T ).

Dimostrazione. The proof relies on a first order Taylor expansion
with Lagrange rest:

g(Zn(ω)) = g(z) +∇g(Z⋆
n(ω))(Zn(ω)− z)

where Z⋆
n(ω) lies, for all ω, between z and Zn(ω). Exploiting the conti-

nuity of ∇g (g is of class C1 by construction), we have thus:
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lim
n→∞

√
n (g(Zn)− g(z)) = ∇g(z) lim

n→∞

√
n (Zn − z)

and the thesis follows from the fact that the right hand side has law
N(0,∇g(z) Σ∇g(z)T ).

Now, the sequence (MX ,MY ,MX2 ,MY 2,MXY ) converges almost
surely to (µX(θ), µY (θ), µX2(θ), µY 2(θ), µXY (θ)) when the rank of the
samples tends to +∞. Since:

R = g (MX ,MY ,MX2 ,MY 2,MXY )

where:

g(x1, x2, x3, x4, x5) =
x5 − x1x2

√

(x3 − x2
1)(x4 − x2

2)

is continuous (µX(θ), µY (θ), µX2(θ), µY 2(θ), µXY (θ)), then R converges
almost surely to ρ(θ) (the interested reader can try to show this contin-
uous mapping theorem!). This guarantees the consistency of the esti-
mator, since almost sure convergence implies convergence in probability.
Moreover, since:

lim
n→∞

Eθ(R) = ρ(θ)

R is also an asyntotically unbiased estimator.
If the components (Xi, Yi) follow a normal law, we can also use the

propagation of errors to find the law of R and to provide confidence
intervals for ρ(θ). In order to simplify the notations, we let µX(θ) = 0 e
µY (θ) = 0.

For the central limit theorem, the random variable:

lim
n→∞

√
n

























MX

MY

MX2

MY 2

MXY













−













0
0

σ2
X(θ)

σ2
Y (θ)

ρ(θ)σX(θ)σY (θ)

























follows a normal law with covariance matrix Σ whose explitit form is:

Σ =













σ2
X 2ρσXσY 0 0 0

ρσXσY σ2
Y 0 0 0

0 0 2σ4
X 2ρ2σ2

Xσ
2
Y 2ρσ3

XσY

0 0 2ρ2σ2
Xσ

2
Y 2σ4

Y 2ρσ3
Y σX

0 0 2ρσ3
XσY 2ρσ3

Y σX (1 + ρ2)σ2
Xσ

2
Y













Moreover:

∇g(0, 0, σ2
X(θ), σ

2
Y (θ), ρ(θ)σX(θ)σY (θ)) =















0
0

− ρ(θ)

σ2
X
(θ)

− ρ(θ)
σ2
Y
(θ)

1
σX (θ)σY (θ)














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Since ∇gΣ∇g = (1− ρ(θ)2)2, the propagation of errors theorem guaran-
tees that:

lim
n→∞

√
n (R− ρ(θ)) ∼ N

(

0,
(

1− ρ(θ)2
)2
)

(86)

The reader can verify that the same result can be obtained also when
µX(θ), µY (θ) do not vanish.

We have thus:

Pθ

(

−φ1−α
2
≤ √

n
R− ρ(θ)

1− ρ(θ)2
≤ φ1−α

2

)

≃ 1− α (87)

and a confidence interval at the level 1− α for ρ(θ) turns out to be:
[

1−
√
1− 4zR+ 4z2

2z
,

√
1 + 4zR+ 4z2 − 1

2z

]

(88)

where z =
φ1−α

2√
n
.

E. Linear Regression

It is very common, in several applications, to guess an affine-linear re-
lation between two quantities, say X and Y . The quantity X is usually
called the input variable, and can be controlled by the experimental-
ist, who chooses n-values, (x1, . . . , xn) and, correspondingly, performes
n measurements of the response variable, Y . The response variable
is random and the experimentalist will obtain n data (y1, . . . , yn). If we
expect a linear-affine relation between X and Y , the simplest way to de-
scribe the experiment with the language of probability theory is to model
(y1, . . . , yn) as realizations of n random variables of the form:

Yi = a+ bxi + σεi (89)

where the xi enter simply as real parameters, while εi ∼ N(0, 1) are
standard normal independent random variables; the coefficients a and
b of the linear-affine relation, and the measurement error σ, are to be
inferred from the data. We thus assume that the probability distribution
of the error does not depend on the value of the input variable.

We are going now to show how to build up estimations of a, b, and
σ, using as starting point the input parameters (x1, . . . , xn) and the data
(y1, . . . , yn).

If we organize the data in couples (x1, y1) . . . (xn, yn), the most natural
strategy is to find the values of a and b minimizing the quantity:

F (a, b) =
n
∑

i=1

|yi − a− bxi|2 (90)

We can write the above function in a more geometrical way as follows:

F (a, b) =
∣

∣

∣
y −M

(

a
b

)

∣

∣

∣

2

(91)

where y = (y1, . . . , yn) and M ∈ Mn×2(R) is the matrix:
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



1 x1

. . . . . .
1 xn



 (92)

whose columns are linearly independent provided that (x1 . . . xn) are not

all equals. As (a, b) vary, the set of points M

(

a
b

)

is the plane E1 in R
n

spanned by the columns of M . Thus:

min
(a,b)∈R2

F (a, b) = min
p∈E1

|y − p|2 (93)

so that elementary geometry implies that the minimum is reached when
p = Π1y, Π1 being the projector onto the plane E1, whose explicit form
is the following:

Π1 = M(MTM)−1MT (94)

We have thus:
p = Π1y = M(MTM)−1MT y (95)

which, keeping in mind that p = M

(

a
b

)

, leads to the estimator:

(

A
B

)

(Y1 . . . Yn) = (MTM)−1MTY (96)

or, more explicitely:

A(Y1 . . . Yn) =
MX2MY −MXMXY

MX2 −M2
X

B(Y1 . . . Yn) =
MXY −MXMY

MX2 −M2
X

(97)

We stress that the quantities MX and MX2 are not random, depend-
ing only on the input data. The random variables (97) are unbiased
estimators of the parameters (a, b); in fact:

E

[(

A
B

)]

= (MTM)−1MTE[Y ] = (MTM)−1MTM

(

a
b

)

=

(

a
b

)

(98)
We have still to build up an estimator for σ2. The idea is that such
parameter determines the discrepancy between the data (y1, . . . , yn) and
the points of the regression line (a+bx1, . . . , a+bxn). It is thus natural
to interrelate such parameter to the minimum of the function:

min
p∈E1

|y − p|2 = |Π2y|2 (99)

Π2 being the projector onto the n−2-dimensional orthogonal complement
of the plane E1. Such quantity can be interpreted as a realization of the
random variable:

S2(Y1 . . . Yn) =
|Π2Y |2
n− 2

=

∑

i |Yi −A− BXi|2
n− 2

(100)

28



E. Vitali Lecture 2. Mathematical Statistics

which is an unbiased estimator for σ2 since:

E
[

|Π2Y |2
]

= σ2E
[

|Π2ǫ|2
]

= σ2 (n− 2) (101)

We can also estimate confidence intervals for the parameters a, b, σ2

relying on the following result:

Proposizione 16 The random variables A and B are independent from
S2. Moreover:

S2

σ2
∼ χ2(n− 2)

n− 2
A− a√
ma S

∼ t(n− 2)

B − b√
mb S

∼ t(n− 2)

(102)

where:

ma =
MX2

n(MX2 −M2
X)

, mb =
1

n(MX2 −M2
X)

(103)

Proof. Since the random variable ǫ and the linear projectors Π1,Π2

satisfy the hyphothesis of Cochran theorem, the random variables Π1ǫ and
Π2ǫ are independent. Moreover, Cochran theorem guarantees that:

|Π2ǫ|2 ∼ χ2(n− 2) (104)

since the subspace onto which Π2 projects has dimension n − 2. Thus
S2

σ2

|Π2ǫ|2
n−2

∼ χ2(n−2)
n−2

. Since the covariance matrix of the random variable

(MTM)−1MTY is:

cov[(MTM)−1MTY ] = (MTM)−1MT cov[Y ]M(MTM)−1 = σ2 (MTM)−1

(105)
we conclude that A ∼ N(a,ma σ

2), B ∼ N(b,mb σ
2) where ma =

[

(MTM)−1
]

11
=

M
X2

n(M
X2−M2

X
)
and mb =

[

(MTM)−1
]

22
= 1

n(M
X2−M2

X
)
.

The definition of the Student law together with the independence of A
and B of S completes the proof.

We are now able to provide confidence intervals of level 1− α for σ2:

[

n− 2

χ2
1−α

2
(n− 2)

S2,
n− 2

χ2
α
2
(n− 2)

S2

]

(106)

and for a and b:

[

A−√
ma S t1−α

2
(n− 2),A+

√
ma S t1−α

2
(n− 2)

]

[

B −√
mb S t1−α

2
(n− 2),B +

√
mb S t1−α

2
(n− 2)

] (107)
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