
E. Vitali Lecture 1. Review of probability theory

I. GENERAL DEFINITION

Let us begin by introducing the natural environment to deal with
random phenomena, relying on the assiomatic formulation due to Kol-
mogorov. The notions introduced in this chapter can be found in many
excellent textbooks about basic Probability theory; we will thus limit
ourselves to introduce the the fundamental notions needed to start our
presentation.

The first ingredient we need is provided by the following

Definizione 1 A probability space is a triplet of the form:

(Ω,F , P ) (1)

where:

1. Ω is a non–empty set, called sample space;

2. F is a σ-field of subsets of Ω, called the set of events;

3. P is a measure F satisfying the condition P (Ω) = 1, called prob-

ability measure.

The elements of Ω are interpreted as all the possible outcomes of an ex-
periment modelled by the probability space (Ω,F , P ). Once observed
the outcome of the given experiment, we know whether some events
have happened or not: the collection of such events is F . The proba-
bility measure describes how likely is the outcoming of the events. The
mathematical requirement of F being a σ-field means, by definition, that
F is closed under countable unions and intersections, and under comple-
mentations; morevover, Ω itself and the empty set ∅ belongs to F by
definition. The measure P is σ-additive, i.e., for any countable family of
events {A1, . . . , An, . . . } ⊂ F such that Ai ∩ Aj = ∅ if i 6= j:

P

(

+∞
⋃

j=1

Aj

)

=

+∞
∑

j=1

P (Aj) (2)

Nota 2 In general, the sample space can be any non-empty set, finite,
infinite countable or uncountable. Whenever Ω is finite or countably
infinite, the σ-field is always taken to be the whole power set of Ω, F =
P(Ω), containing all the subsets of Ω. Whenever Ω is uncountable, the
power set is in general too large, giving rise to pathological situations in
which a probability measure cannot be defined (the reader may remember
that this is the case in Lebesgue measure theory). In such cases one has
to restrict the σ-field. Whenever Ω is a topological space, we will always
choose the Borel σ-field, B(Ω), which is the smallest σ-field containing
all the open subsets of Ω.

The second basic ingredient is the definition of random variable.
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Definizione 3 Let (E, E) be a measurable space, that is a non-empty set
E together with a σ-field of subsets E . A random variable is a function
X : Ω → E which is measurable, that is:

∀B ∈ E , {ω ∈ Ω : X(ω) ∈ B} ∈ F (3)

When we want to make explicit the σ-fields, we will use the transparent
notation:

X : (Ω,F , P ) → (E, E) (4)

Nota 4 We will use simple notation of the form {X ∈ B} instead
of {ω ∈ Ω : X(ω) ∈ B}, or, in case of real valued random variables,
{X ≤ x} instead of {ω ∈ Ω : X(ω) ≤ x} and so on.

Random variables are thus the function recognizing the structure
of measurable spaces, just like continous functions between topological
spaces and linear applications between vector spaces.

The map:

E ∋ B  µ(B)
def
= P (X ∈ B) (5)

is a probability measure on E and is called the law or distribution of
the random variable X . The notation X ∼ µ is commonly use to denote
the fact that µ is the law of X . The measurable space (E, E), equipped
with the measure µ, becomes a probability space (E, E , µ).

Nota 5 We note that the identity map on (Ω,F):

Ω ∋ ω  idΩ(ω) = ω (6)

is naturally a random variable and its law is precisely P . This simple
observation allows to conclude that, whenever a probability measure P is
defined on a measurable set, there always exist a random variable taking
values in the given set whose law is P . This could appear trivial at first
sight, but it is useful: we will always work directly with laws, forgetting
the explicit definition of the random variables.

We stress that the notion of measurability is very important: from
the point of view of the interpretation, the fact that a random variable X
is measurable means that, once observed the outcome of an experiment
modelled by (Ω,F , P ), the value of X is known. This will turn out to be
a key point in future chapters, when our knowledge will depend on time.

Besides measurability, an extremely important notion is that of inde-
pendence, translating in mathematical language the intuitive idea the
term suggests.

Definizione 6 A collection {Fj}j∈J (not necessarily finite) of sub-σ-
fields of F are said to be independent if, for any finite subset I ⊂ J
the following equality holds:

P

(

⋂

i∈I
Ai

)

=
∏

i∈I
P (Ai) (7)
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for any choice of events Ai ∈ Fi.
A collection {Aj}j∈J of events belonging to F are said to be inde-

pendent if the sub-σ-fields
{

FAj

}

j∈J , FAj
= {∅, Aj, A

C
j ,Ω}, are inde-

pendent.
A collection {Xj}j∈J of random variables, Xj : (Ω,F , P ) → (Ej , Ej),

are said to be independent if the generated sub-σ-fields {σ(Xj)}j∈J ,
σ(Xj) being, by definition, the smallest σ-field containing all the events
{Xj ∈ B} for all B ∈ Ej, are independent.

II. FIRST EXAMPLES: BINOMIAL LAW, POISSON LAW,

AND GEOMETRIC LAW

Now that we have introduced the most important ingredients, we are
ready to build up our first examples probability spaces and random vari-
ables. We consider an experiment consisting in tossing a (non necessarily
balanced) coin n times and counting the number of heads obtained. How
can we describe such situation in the language of probability theory? It
is quite natural to build up a probability space (Ω,F , P ) in the following
way; let’s choose:

Ω = {{0, 1}n} (8)

This means that the possible outcomes have the form Ω ∋ ω =
(ω1, . . . , ωn) where, using a simple convention, ωi = 0 if at the i-th toss
we get tail and ωi = 1 if we get head. We may consider as σ-field the
whole power set of Ω, F = P(Ω), containing all the subsets of Ω.

The definition of the probability measure requires some more work.
We introduce a parameter p ∈ [0, 1], which would be equal to 1/2 if the
coin were perfectly balanced, with the interpretation of how likely is the
outcome of head in a single toss. Rigorously, this means we are defining:

P (Ai) = p, ∀i = 1, . . . , n, Ai = {ω = (ω1, . . . , ωn) ∈ Ω| ωi = 1} (9)

assuming that all tosses are equivalent, i.e. P (Ai) does not depend on
i. We observe now that the event “the first x tosses (x = 0, . . . , n) give
head and the other (n− x) tail”, contains only the element of Ω:

ω = (1, 1, . . . , 1, 0, . . . , 0) = A1 ∩ · · · ∩ Ax ∩AC
x+1 ∩ · · · ∩AC

n (10)

If we assume that the tosses are independent we have necessarily:

P ({ω = (1, 1, . . . , 1, 0, . . . , 0)}) = px(1− p)n−x (11)

Moreover any element of ω in which the value 1 appears x times and the
value 0 (n−x) times has the same probability by construction. We have
thus defined P ({ω}) for all ω ∈ Ω and thus:

P (A) =
∑

ω∈A
P ({ω}) (12)
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for any event A ∈ F = P(Ω).
The definition of the probability space (Ω,F , P ) is now completed.
Let’s define now the random variable X : Ω → {0, 1, . . . , n}:

ω = (ω1, . . . , ωn) X(ω) =
n
∑

i=1

ωi (13)

where the set {0, 1, . . . , n} is trivially measurable once endowed with its
power set σ-field P ({0, 1, . . . , n}). The random variable X simply counts
the number of heads in n independent coin tosses. The law of X can be
obtained very simply starting from the probabilities:

P (X = x), x ∈ {0, 1, . . . , n} (14)

that can be obtained counting the number of different ω ∈ Ω in which
the value 1 appears x times and the value 0 (n− x) times: the event

{X = x} = {ω ∈ Ω |
n
∑

i=1

ωi = x} (15)

contains indeed all such elements. The result is:

P (X = x) =

(

n
x

)

px (1− p)n−x, x = 0, . . . , n (16)

From the knowledge of P (X = x) we immediately obtain the law of X :

P ({0, 1, . . . , n}) ∋ B  µ(B) =
∑

x∈B

(

n
x

)

px (1− p)x (17)

This law is very famous and it is called binomial law with parameters

(n, p): we will write X ∼ B(n, p). In the particular case n = 1, B(1, p)
is called Bernoulli law with parameter p.

In order to make the notations more compact, it is useful to define a
function p : R → R as follows:

R ∋ x p(x) =







(

n
x

)

px (1− p)n−x if x = 0, . . . , n

0 otherwise
(18)

Such function is called discrete density of X , it is different from zero
only in a countable subset of R and satisfies:

p(x) ≥ 0,
∑

x∈R
p(x) = 1 (19)

where the sum is meant in the language of infinite summations theory.
The law can be extended naturally to the measurable set made by real
numbers equipped with the Borel σ-field B(R), the smallest σ-field con-
taining the open subset of R, (R,B(R))

B(R) ∋ B  µ(B) =
∑

x∈B
p(x) (20)
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Nota 7 In this example we have built up explicitely a probability space
(Ω,F , P ) and a discrete random variable X (i.e. it assumes only a
countable set of values). The law of such random variable turned out to
be completely determined by the discrete density p(x). The reader will
imediately realize that the precise details of the definition of the space
(Ω,F , P ) and of X can be completely forgotten once the law of X is
known: they actually have no impact on the probabilistic description of
the experiment.

Starting from the binomial law, it is possible to build up other very
important laws. We consider a law B(n, λ

n
), where λ > 0 is a fixed

parameter, and we investigate the asymptotic behavior as n → +∞:

P (X = x) =

(

n
x

)

(

λ
n

)x
(1− λ

n
)n−x = n!

x!(n−x)!
λx

nx (1− λ
n
)n−x = (21)

= λx

x!
(1− λ

n
)n n(n−1)...(n−x+1)

nx (1− λ
n
)−x n→+∞→ λx

x!
e−λ

The last expression provides the definition of the Poisson law with

parameter λ, related to the discrete density:

R ∋ x p(x) =

{

λx

x!
e−λ x = 0, 1, 2, . . .
0 otherwise

(22)

It is simple to check that the above function actually defines a discrete
density:

∑

x∈R
p(x) =

+∞
∑

x=0

λx

x!
e−λ = eλe−λ = 1 (23)

A Poisson law is often used to model experiments in which a system of
many objects is observed (for example a collection of nuclei), each having
a very low probability to undergo a certain phenomenon (for example
radioactive decay).

Another interesting question is the following: what is the probability
that the first head appears precisely at the x-th toss? Let T be the
random variable providing the toss in which we obtain the first head. To
evaluate P (T = x). we can use the following simple identity:

{T = x} ∪ {T > x} = {T > x− 1} (24)

implying, since naturally {T = x} ∩ {T > x} = ∅:

P (T = x) + P (T > x) = P (T > x− 1) (25)

The key point is that the event {T > x} corresponds to no heads in the
first x tosses, so that the probability is:

P (T > x) =

(

x
0

)

p0 (1− p)x−0 = (1− p)x (26)

It follows that:
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P (T = x) = P (T > x−1)−P (T > x) = (1−p)x−1−(1−p)x = p(1−p)x−1

(27)
We call geometric law of parameter p ∈ [0, 1] the law associated with
the discrete density:

R ∋ x p(x) =

{

p (1− p)x x = 0, 1, 2, . . .
0 otherwise

(28)

In our example, T − 1 has a geometric law.

III. ABSOLUTELY CONTINUOUS RANDOM VARIABLES

In the preceding examples we have presented our first examples of ran-
dom variables. All such examples involved real valued discrete random
variables, taking values in a countable subset of R; their law is univocally
determined by the discrete density p(x), non-zero only inside a countable
set, non-negative and normalized to one. The law has the form:

B(R) ∋ B  µ(B) =
∑

x∈B
p(x) (29)

The generalization to multidimensional discrete random variables is
straightforward: one simply defines discrete densities p(x) on R

d, related
to the laws of random variables of the form X = (X1, . . . , Xd) where,
naturally, the Xi are real valued discrete random variables.

In general, we will very often meet random variables which are not
discrete. The simplest example is provided by the uniform law in (0, 1):
we will say that a random variable is uniform in (0, 1) if its law has the
form:

µ(B) =

∫

B

dx p(x) (30)

where:

p(x) =

{

1 x ∈ (0, 1)
0 x /∈ (0, 1)

(31)

The values of X cover uniformly the interval (0, 1). Random variables
uniform in (0, 1) will be very important in the definition of sampling tech-
niques in the following chapters: the key point is that, with a computer,
we can generate the values of X , in a sense which will be later clarified.

It is evident that, in (31), the discrete density has been replaced by a
continuous density and the summation has been replaced by an integral.
The random variable X belongs to a very important class of random
variables, defined in the following definition.

Definizione 8 We say that a random variables taking values in R
d, X :

(Ω,F , P ) → (Rd,B(Rd)) is absolutely continuous if the law µ of X
is absolutely continuous with respect to the Lebesgue measure, that is
µ(B) = 0 whenever B has Lebesgue measure equal to zero.
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If X is absolutely continuous, the Radon–Nicodym theorem, from mea-
sure theory, ensures the existence of the density of X , i.e. a function
p : Rd → R non-negative, Borel-measurable, Lebesgue-integrable with
∫

Rd dx p(x) = 1, and such that:

µ(B) =

∫

B

dx p(x) =

∫

Rd

dx 1B(x) p(x) ∀B ∈ B(Rd) (32)

The density of a random variable is unique almost everywhere with re-
spect to Lebesgue measure: if p e p′ are two densities of a random vari-
able X , then necessarily they coincide everywhere but inside a set of zero
Lebesgue measure.

Nota 9 We invite the reader to observe the similarity between the dis-
crete and the absolutely continuous case. If a random variable has dis-
crete density pd(x), then:

µ(B) =
∑

x∈B
pd(x) (33)

while, if it is absolutely continuous, there exist a density pc(x) such that:

µ(B) =

∫

B

dx pc(x) (34)

Several authors unify the two cases using the integral notation defining
pd(x) as a sum of Dirac’s deltas. We prefer not to use such a notation.

We observe, on the other hand, that there exist random variables which
are neither discrete nor absolutely continuous.

In the case of real valued random variables, it is always possible to
define the cumulative distribution function, F : R → R as follows:

R ∋ x F (x)
def
= µ ((−∞, x]) = P (X ≤ x) (35)

By construction, F is increasing, right-continuous, and satisfies:

lim
x→−∞

F (x) = 0, lim
x→+∞

F (x) = 1 (36)

It is possible to show that there is a one to one correspondence between
the cumulative distribution function and the law of a random variable.
Moreover, for any function F possessing the above mentioned properties,
there exists a random variable having F as the cumulative distribution
function.

In particular useful relations are:

µ ((x, y]) = F (y)− F (x), µ ((x, y)) = F (y−)− F (x−), . . . (37)

and:

µ({x}) = F (x)− F (x−) (38)

where we use the notation F (x−) = limt→x− F (t).
If X is absolutely continuous we have:
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F (x) =

∫ x

−∞
dy p(y) (39)

Moreover, if the density is continuous on R, the cumulative distribution
function is differentiable on R and we have:

p(x) =
dF (x)

dx
(40)

In general (40) is not true for any absolutely continuous random variable,
since the density can happen not to be continuous; however, it can be
shown that the cumulative distribution function is always differentiable
almost everywhere with respect to the Lebesgue measure, and it is always
possible to modify the density in such a way that it coincides with the
derivative of F in all points where such derivative exists.

Esempio 1 Our first examples of absolutely continuous random vari-
ables are the following:

1. If the density is:

p(x) =

{

1, x ∈ (0, 1)
0, x /∈ (0, 1)

(41)

we will say that X is Uniform in (0, 1).

2. If the density is:

p(x) =
1√
2π

exp

(

−x2

2

)

(42)

we will say that X is Standard Normal and we will write X ∼
N(0, 1).

IV. INTEGRATION OF RANDOM VARIABLES

For real valued random variables, it is possible to introduce the notion
of abstract integral with respect to the probability measure. As usual in
abstract integration theories, one works with extended functions, that
is random variables X : Ω → R = R ∪ {±∞}, endowing R with the
Borel σ-field. Such extension is completely innocuous, and simply meant
to work with limits, superiors or inferiors extrema. The construction is
very simple, and will be sketched here starting from the class of random
variables introduced in the following definition.

Definizione 10 We say that X is simple if it can be written as:

X(ω) =
n
∑

i=1

ai 1Ai
(ω) (43)

where n is an integer number, ai ∈ R, Ai ∈ F , i = 1, . . . , n.
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The integral of simple random variables is defined as follows:

Definizione 11 If X is simple we define expectation or abstract

integral of X with respect to the probability measure P , denoted
∫

Ω
X(ω)P (dω):

∫

Ω

X(ω)P (dω)
def
=

n
∑

i=1

aiP (Ai) (44)

If X is a non-negative random variable, we define expectation or ab-

stract integral of X with respect to the probability measure P , denoted
∫

Ω
X(ω)P (dω) the extended real number:

∫

Ω

X(ω)P (dω)
def
= sup

{
∫

Ω

Y (ω)P (dω) : Y simple, 0 ≤ Y ≤ X

}

(45)

which can be equal to +∞.

In the most general case, we let X+ = max(X, 0) e X− = −min(X, 0)
and introduce the following definition:

Definizione 12 We say that X : Ω → R is integrable if
∫

Ω
X+(ω)P (dω) < +∞ and

∫

Ω
X−(ω)P (dω) < +∞. In such case we

define expectation or abstract integral of X with respect to the prob-
ability measure P , and denote

∫

Ω
X(ω)P (dω), the real number:

∫

Ω

X(ω)P (dω)
def
=

∫

Ω

X+(ω)P (dω)−
∫

Ω

X−(ω)P (dω) (46)

We stress the important identity:
∫

Ω

1A(ω)P (dω) = P (A), ∀A ∈ F (47)

Definizione 13 The set of integrable random variables X : Ω → R =
R ∪ {±∞} will be denoted L(Ω,F , P )

Readers familiar with Lebesgue theory of integration will certainly not be
surprised by the following elementary properties of the abstract integral,
which will be stated without proof:

1. If X, Y are integrable random variables, αX + βY is integrable for
all α, β ∈ R and:

∫

Ω

(αX + βY )(ω)P (dω) = α

∫

Ω

X(ω)P (dω) + β

∫

Ω

Y (ω)P (dω)

(48)

2. If X ≥ 0, then
∫

Ω
X(ω)P (dω) ≥ 0. If moreover Y ≥ 0

is integrable and 0 ≤ X ≤ Y , then X is integrable and
∫

Ω
X(ω)P (dω) ≤

∫

Ω
Y (ω)P (dω).

9
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3. X ∈ L(Ω,F , P ) if and only if |X| ∈ L(Ω,F , P ), and, in such case
|
∫

Ω
X(ω)P (dω)| ≤

∫

Ω
|X(ω)|P (dω)

4. If X = Y almost surely (a.s), i.e. if there exists an event
N , P (N) = 0, such that X(ω) = Y (ω), ∀ω ∈ N c, then
∫

Ω
X(ω)P (dω) =

∫

Ω
Y (ω)P (dω)

The following properties concern limits and approximations:

Teorema 14 If X is non-negative, there exists a sequence {Xn}n of sim-
ple, non-negative random variables, such that Xn(ω) ≤ Xn+1(ω) for each
ω and pointwise converging to X, that is:

lim
n→+∞

Xn(ω) = X(ω), ∀ω ∈ Ω (49)

Teorema 15 (Monotone convergence theorem) If a sequence
{Xn}n of non-negative random variables, such that Xn(ω) ≤ Xn+1(ω),
converges pointwise almost surely to a (non-negative) random variable
X, that is:

lim
n→+∞

Xn(ω) = X(ω) a.s. (50)

then:

lim
n→+∞

∫

Ω

Xn(ω)P (dω) =

∫

Ω

X(ω)P (dω) (51)

even if
∫

Ω
X(ω)P (dω) = +∞. In particular, if

limn→+∞
∫

Ω
Xn(ω)P (dω) < +∞, then X ∈ L(Ω,F , P ).

Teorema 16 (Dominated convergence theorem) If a sequence
{Xn}n of random variables converges almost surely to a random vari-
able X:

lim
n→+∞

Xn(ω) = X(ω), a.s. (52)

and |Xn| ≤ Y , for all n, where Y ∈ L(Ω,F , P ), then Xn ∈ L(Ω,F , P ),
X ∈ L(Ω,F , P ) and:

lim
n→+∞

∫

Ω

Xn(ω)P (dω) =

∫

Ω

X(ω)P (dω) (53)

Definizione 17 We say that two random variables X and Y are equiv-
alent if X = Y almost surely. We denote L1(Ω,F , P ) the set made of
equivalence classes of integrable random variables:

∫

Ω

|X(ω)|P (dω) < +∞ (54)

We denote L2(Ω,F , P ) the set made of equivalence classes of square-
integrable random variables:

∫

Ω

|X(ω)|2P (dω) < +∞ (55)
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Nota 18 In mathematics textbooks, the difference between a random
variable and an equivalence class of random variables is often ignored,
when this cannot give rise to confusion.

We mention the following result:

Teorema 19 L1(Ω,F , P ) and L2(Ω,F , P ) are linear vector spaces, with
L2(Ω,F , P ) ⊂ L1(Ω,F , P ); if X ∈ L2(Ω,F , P ) then:

(
∫

Ω

X(ω)P (dω)

)2

≤
∫

Ω

X(ω)2P (dω) (56)

Moreover, if X, Y ∈ L2(Ω,F , P ), their product is integrable XY ∈
L1(Ω,F , P ) and the (Cauchy-Schwarz inequality) holds:

∣

∣

∣

∣

∫

Ω

X(ω)Y (ω)P (dω)

∣

∣

∣

∣

≤
√

∫

Ω

X(ω)2P (dω)

∫

Ω

Y (ω)2P (dω) (57)

Let’s turn to a useful consequence of the properties of abstract inte-
grals:

Teorema 20 (Chebyshev inequality) If X ∈ L2(Ω,F , P ), for all a >
0 the following inequality holds:

P (|X| ≥ a) ≤
∫

Ω
X(ω)2P (dω)

a2
(58)

Dimostrazione 1 From the obvious inequality X2(ω) ≥ a21|X|≥a(ω), it
follows that:

∫

Ω

X(ω)2P (dω) ≥
∫

Ω

a21|X|≥a(ω)P (dω) = a2 P (|X| ≥ a) (59)

which is just the statement of the theorem.

We will often use the notation:

E [X ]
def
=

∫

Ω

X(ω)P (dω) (60)

when no confusion can rise about the probability space over which we
are integrating.

We stress the identity:

E[1A] = P (A), ∀A ∈ F (61)

which will be frequently used.

Definizione 21 If X ∈ L2(Ω,F , P ), we call Variance of X and denote
V ar(X) the non-negative real number:

V ar(X)
def
= E

[

(X − E[X ])2
]

(62)

The Chebyshev inequality implies the following:

P (|X − E[X ]| ≥ a) ≤ V ar(X)

a2
(63)

which provides an interpretation of the variance: V ar(X) controls the
dispersion of the values of X around the expectation E[X ].
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A. Integration with respect to the law of a random variable

Let X : (Ω,F , P ) → (E, E) be a random variable, and µ its law,
i.e. X ∼ µ. We know that (E, E , µ) is a probability space. Let now
h : (E, E , µ) → (R,B(R)) be a measurable function. Then h ◦ X is a
composition of measurable functions and therefore a real random vari-
able. We are going to prove now the following very important theorem:

Teorema 22 If h ≥ 0 the following equality holds:
∫

Ω

(h ◦X)(ω)P (dω) =

∫

E

h(x)µ(dx) (64)

even when both members are equal to +∞. Moreover, for any h, h◦X ∈
L1(Ω,F , P ) if and only if h ∈ L1(E, E , µ) and, in such case, the above
written equality holds.

Dimostrazione 2 We preliminarly observe that both the members make
sense, being two abstract integrals on two different probability spaces.
Now, we fix B ∈ E and we remind the reader the definition of the law of
X:

µ(B) = P (X ∈ B) (65)

On the other hand, we have:

P (X ∈ B) =

∫

Ω

1X∈B(ω)P (dω) =

∫

Ω

1B(X(ω))P (dω) (66)

and:

µ(B) =

∫

E

1B(x)µ(dx) (67)

so that the statement of the theorem is true if h(x) = 1B(x). By linearity,
the equality holds also when h is a simple function.

Let now h ≥ 0; we know that there exists a sequence {hn}n of non-
negative simple functions, satisfying hn(x) ≤ hn+1(x), and pointwise con-
verging to h. Then, the monotone convergence theorem, applied twice,
justifies the following chain of equalities:

∫

E
h(x)µ(dx) =

∫

E
limn→∞ hn(x)µ(dx) = (68)

= limn→∞
∫

E
hn(x)µ(dx) = limn→∞

∫

Ω
(hn ◦X)(ω)P (dω) =

=
∫

Ω
limn→∞ hn ◦XP (dω) =

∫

Ω
(h ◦X)(ω)P (dω)

proving the theorem in the case h ≥ 0. Finally, if we consider |h|, we im-
mediately conclude that h◦X ∈ L1(Ω,F , P ) if and only if h ∈ L1(E, E , µ),
and the equality between the abstract integrals follows writing h = h++h−.

Now, we focus on the particular case (E, E) = (Rd,B(Rd)); moreover,
we assume X absolutely continuous. If h = 1B we have:

12
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P (X ∈ B) =

∫

Ω

1B(X(ω))P (dω) = µ(B) =

∫

B

dx p(x) =

∫

Rd

dx 1B(x) p(x)

(69)
where the last integrals are ordinary Lebesgue integrals. We can extend
the above result to simple h exploiting linearity and to generic h using
the monotone convergence theorem, obtaining the useful identity:

∫

Ω

(h ◦X)(ω)P (dω) =

∫

Rd

dx h(x) p(x) (70)

which holds for any h ≥ 0 and for any h such that the two integrals exist.
If in particular d = 1, h(x) = x and X ∈ L1(Ω,F , P ), we have:

E[X ] =

∫

Ω

X(ω)P (dω) =

∫ +∞

−∞
dx x p(x) (71)

Moreover, if X ∈ L2(Ω,F , P ), we have:

V ar(X) =

∫ +∞

−∞
dx (x− E[X ])2 p(x) (72)

If the random variable X is discrete and p(x) is its discrete density,
we have:

P (X ∈ B) =

∫

Ω

1B(X(ω))P (dω) = µ(B) =
∑

x∈B
p(x) =

∑

x∈Rd

1B(x)p(x)

(73)
and thus:

∫

Ω

(h ◦X)(ω)P (dω) =
∑

x∈Rd

h(x)p(x) (74)

if h ≥ 0 or if the abstract integral and the finite or infinite sum are finite.
If X ∈ L1(Ω,F , P ), we have:

E[X ] =

∫

Ω

X(ω)P (dω) =
∑

x∈R
x p(x) (75)

and if X ∈ L2(Ω,F , P ), we have:

V ar(X) =
∑

x∈R
(x−E[X ])2 p(x) (76)

V. TRANSFORMATIONS BETWEEN RANDOM VARIABLES

Let now X be a real valued random variable defined on a probability
space (Ω,F , P ), absolutely continuous with density pX(x). Let also g :
R → R be a Borel-measurable function. Y = g(X) is naturally a random
variable. It would be useful to express its law, or its density (if it exists),

13
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in terms of the law of X . We start from the cumulative distribution
function:

FY (y) = P (Y ≤ y) = P (g(X) ≤ y) = P (X ∈ By) =

∫

By

dx pX(x) (77)

where:

By = {x ∈ R : g(x) ≤ y} (78)

Let us examine first the simple case in which g : R → R is bijective,
differentiable with continuous derivative with dg

dx
6= 0; in particular, we

assume g strictly increasing. Then g is invertible on R with inverse g−1

which is differentiable with continuous non-vanishing derivative; thus:

By = {x ∈ R : g(x) ≤ y} = {x ∈ R : x ≤ g−1(y)} (79)

which implies that:

FY (y) = P (Y ≤ y) = P (g(X) ≤ y) = P (X ≤ g−1(y)) = FX(g
−1(y))

(80)
where FX is the cumulative distribution function of X . Under the ipoth-
esis we have fixed about the function g, if FX is everywhere differentiable
(this happens if pX(x) is continuous), also FY is differentiable, ensuringe
the existence of the density of Y = g(X):

pY (y) =
dFY (y)

dy
=

d

dy
(FX ◦ g−1)(y) = pX(g

−1(y))
dg−1(y)

dy
(81)

If, on the other hand, g is strictly decreasing, we have:

FY (y) = P (g(X) ≤ y) = P (X > g−1(y)) = 1− FX(g
−1(y)) (82)

and thus:

pY (y) =
dFY (y)

dy
= − d

dy
(FX ◦ g−1)(y) = pX(g

−1(y))

(

−dg−1(y)

dy

)

(83)

Combining the above results, we have proved the following:

Teorema 23 If a real random variable X has continuous density pX(x)
and g : R → R is a bijective function, differentiable with continuous
derivate never equal to zero, then the random variable Y = g(X) has
density given by:

pY (y) = pX(g
−1(y))

∣

∣

∣

∣

dg−1(y)

dy

∣

∣

∣

∣

(84)
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As a simple application we consider affine transformations g(x) =
σx+µ, σ, µ ∈ R, σ 6= 0. Since g−1(y) = y−µ

σ
, the theorem above provides

the density of Y = σX + µ:

pY (y) = pX

(

y − µ

σ

)

1

|σ| (85)

In particular, if X ∼ N(0, 1) is a standard normal random variable,
Y = σX + µ, with µ ∈ R, σ ∈ (0,+∞), has density:

pY (y) =
1√
2πσ

exp

(

−(y − µ)2

2σ2

)

(86)

We will say that Y = σX +µ is a normal with parameters µ and σ2

and we will write Y ∼ N(µ, σ2).
When the hypotheses of the above proved theorem do not hold, we

have to work directly with the equality:

FY (y) = P (Y ≤ y) = P (g(X) ≤ y) = P (X ∈ By) =

∫

By

dx pX(x) (87)

where:

By = {x ∈ R : g(x) ≤ y} (88)

For example, let X ∼ N(0, 1) be a standard normal and g(x) = x2; we
wish to evaluate the density of Y = g(X) = X2. Naturally FY (y) is zero
if y ≤ 0. On the other hand, if y > 0, we have:

FY (y) = P (Y ≤ y) = P (X2 ≤ y) = P (−√
y ≤ X ≤ √

y) = (89)

= FX(
√
y)− FX(−

√
y)

with:

FX(±
√
y) =

∫ ±√
y

−∞
dx

1√
2π

exp

(

−x2

2

)

(90)

We see that FY (y) is almost everywhere differentiable (except at the
origin), and thus we can obtain the density by differentiation, obtaining:

pY (y) =
1√
2π

exp(−y/2)√
y

1(0,+∞)(y) (91)

We say that Y = X2 is chi-square with one degree of freedom, and
we write Y ∼ χ2(1).

VI. MULTI-DIMENSIONAL RANDOM VARIABLES

Now we consider random variables taking values in Rd. For simplic-
ity of exposition, we work with d = 2, but the results can be readily
generalized to higher dimensions, with less transparent notations.
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Let therefore X = (Y, Z) be a two-dimensional random variable, ab-
solutely continuous with density p(y, z). An interesting result is the
following, which we just state without proof:

Teorema 24 Y and Z are real random variables absolutely continuous,
with densities pY (y) e pZ(z) given by:

pY (y) =

∫ +∞

−∞
dz p(y, z), pZ(z) =

∫ +∞

−∞
dy p(y, z) (92)

Moreover, Y and Z are independent if and only if:

p(y, z) = pY (y)pZ(z) (93)

almost everywhere with respect to Lebesgue measure.

The densities pY (y) and pZ(z) are called marginal densities of p. We
observe that, once p is known, the marginal densities can be obtained,
but the converse is not true: if we know pY (y) and pZ(z), we can obtain
p only if Y and Z are independent.

If Y, Z ∈ L2(Ω,F , P ), then the product Y Z is integrable: Y Z ∈
L1(Ω,F , P ). We call covariance of Y and Z, and we denote Cov(Y, Z),
the real number:

Cov(Y, Z) = E [(Y − E[Y ])(Z −E[Z])] = E [Y Z]−E[Y ]E[Z] (94)

From the theorem of integration with respect to the law of a random
variable, in the special case X = (Y, Z), (E, E) = (R2,B(R2)) and
h(y, z) = yz, we obtain the following identity:

E [Y Z] =

∫

R2

dydz yz p(y, z) (95)

If Y and Z are independent, then:

E [Y Z] =

∫

R2

dydz yz pY (y)pZ(z) = E[Y ]E[Z] (96)

thanks to Fubini theorem from Lebesgue integral theory, and thus:

Cov(Y, Z) = 0 (97)

The property of having null covariance is called non-correlation. We
have proved that two independent random variables are non-correlated;
the converse, in general is not true.

We call correlation coefficient of Y and Z the real number:

ρY Z =
Cov(Y Z)

√

V ar(Y )
√

V ar(Z)
(98)

This is zero if Y and Z are non-correlated, and, in general, satifies the
following property:

−1 ≤ ρY Z ≤ 1 (99)

which is a simple consequence of Cauchy-Schwarz inequality.
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A. Evaluation of laws

Let X = (Y, Z), as before, a two–dimensional random variable abso-
lutely continuous, with density p(y, z). We wish to evaluate the law of
Y + Z, a real random variable.

Let’s evaluate the cumulative distribution function:

F (u) = P (Y + Z ≤ u) = P (X ∈ Au) =

∫

Au

dydz p(y, z) (100)

where:

Au = {(y, z) ∈ R
2 : y + z ≤ u} (101)

Then:

F (u) =

∫ +∞

−∞
dy

∫ u−y

−∞
dz p(y, z) (102)

With a change of variables z  z′ = z + y we have:

F (u) =

∫ u

−∞
dz′
∫ +∞

−∞
dy p(y, z′ − y) (103)

which provides the expression for the density of the sum of two random
variables:

pY+Z(u) =

∫ +∞

−∞
dy p(y, u− y) (104)

The calculation we have made is a special case of a general procedure,
that can be described as follows: let X be a d-dimensional random vari-
able absolutely continuous with density pX(x); moreover, let g : Rd → Rk

be a Borel-measurable function. W = g(X) is a k-dimensional random
variable. If pW (y) were the density of W , then, for any Borel set A ⊂ Rk,
the following equality would hold:

∫

Rk

dy 1A(y)pW (y) = P (W ∈ A) = P (X ∈ g−1(A)) =

∫

Rd

dx 1A(g(x))pX(x)

(105)
where g−1(A) = {x ∈ R

d : g(x) ∈ A}. The above relation is very general
and, in some cases, allows to evaluate the density pW (y). Let’s consider

the case d = k; we assume that pX is null outside an open set D ⊂ Rd

and that g : D → V is a diffeomorphism between D and an open set
V ⊂ Rd. Naturally pW (y) will be zero outside V . Then, if A ⊂ V , a
basic theorem from mathematical analysis guarantees the validity of the
following change of variables:

∫

D

dx 1A(g(x))pX(x) =

∫

V

dy 1A(y)pX(g
−1(y))

∣

∣det(Jg−1(y))
∣

∣ (106)
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which implies the following expression for the density of W = g(X):

pW (y) = pX(g
−1(y))

∣

∣det(Jg−1(y))
∣

∣ (107)

where Jg−1(y) is the Jacobian matrix of g−1 evaluated in y.

VII. CHARACTERISTIC FUNCTIONS

Let X be a d-dimensional random variable, X = (X1, . . . , Xd), X ∼ µ.

Definizione 25 The function φX :

φX : Rd → C (108)

R
d ∋ θ  φX(θ)

def
= E

[

exp

(

i

d
∑

k=1

θkXk

)]

(109)

is called characteristic function of X. The complex-valued integral
(109) is defined as:

E

[

exp

(

i

d
∑

k=1

θkXk

)]

= E

[

cos

(

i

d
∑

k=1

θkXk

)]

+ iE

[

sin

(

d
∑

k=1

θkXk

)]

(110)

Since trigonometric functions are measurable and limited, the abstract
integrals always exist, implying that the characteristic function is well
defined for every random variable. Moreover, applying the theorem of
integration with respect to the law of X , we obtain:

φX(θ)=

∫

Rd

exp(iθ · x)µ(dx) (111)

which, if X is absolutely continuous, becomes:

φX(θ) =

∫

Rd

dx exp(iθ · x) p(x) (112)

If X is discrete, on the other hand, we have:

φX(θ) =
∑

x∈Rd

exp(iθ · x) p(x) (113)

There is a one to one correspondence between characteristic functions
and laws of random variables: φX(θ) uniquely determines the law of X .

We present now some properties of characteristic functions. The first
trivial observation is the equality:

φX(0) = 1 (114)

Moreover, extending to complex valued functions an inequality from ab-
stract integration theory, we have:
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|φX(θ)| ≤ E

[

| exp
(

i
d
∑

k=1

θkXk

)

|
]

= 1, ∀θ ∈ R
d (115)

that is the characteristic function is limited. Moreover, the constant
function 1 (which is integrable!), dominates any sequence of functions
exp(iθn ·x), in the sense of dominated convergence theorem; if θn → θ for
n → +∞, then exp(iθn ·x) → exp(iθ ·x) and, by dominated convergence
theorem, φX(θn) → φX(θ). Thus the characteristic function is continuous
over Rd.

Let’s turn to smoothness. We state without proof the following theo-
rem:

Teorema 26 If E[|X|m] < +∞ for some integer m, then the charac-
teristic function of X has continuous partial derivatives till order m and
the following equality holds:

∂m

∂θj1 . . . ∂θjm
φX(θ) = imE

[

Xj1 . . .Xjm exp

(

i

d
∑

k=1

θkXk

)]

(116)

In the case of real random variables it follows that, if X ∈ L1(Ω,F , P ):

E[X ] = −i
dφX(0)

dθ
(117)

and, if X ∈ L2(Ω,F , P ), we have also:

E[X2] = −d2φX(0)

dθ2
(118)

We now present some examples:

Esempio 2 If X is uniform in (0, 1) we have:

φX(θ) =

∫ 1

0

dx eiθx =

{

eiθ−1
iθ

, θ 6= 0
1, θ = 0

(119)

Esempio 3 If X is standard normal we have:

φX(θ) =
1√
2π

∫ +∞

−∞
dx exp

(

iθx− x2

2

)

(120)

Since the density is an even function, we can write:

φX(θ) =
1√
2π

∫ +∞

−∞
dx cos(θx) exp

(

−x2

2

)

(121)

We know that X is integrable and square-integrable, and thus we can
apply the above theorem to evaluate the derivative of the characteristic
function:

dφX(θ)

dθ
= − 1√

2π

∫ +∞

−∞
dx x sin(θx) exp

(

−x2

2

)

(122)
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We observe that the identity:

−
∫ +∞

−∞
dx x sin(θx) exp

(

−x2

2

)

=

∫ +∞

−∞
dx sin(θx)

(

d

dx
exp

(

−x2

2

))

(123)
allows us to perform integration by part, providing the following result:

dφX(θ)

dθ
= − 1√

2π

∫ +∞

−∞
dx θ cos(θx) exp

(

−x2

2

)

= −θφX(θ) (124)

We have tus obtained an ordinary differential equation which, together
with the initial condition φX(0) = 1, has the unique solution:

φX(θ) = exp

(

−θ2

2

)

(125)

Esempio 4 If X is binomial, X ∼ B(n, p), we have:

φX(θ) =
n
∑

x=0

eiθx
(

n
x

)

px (1− p)n−x =
(

peiθ + 1− p
)n

(126)

where Newton’s binomial theorem has been employed.

Esempio 5 If X is Poisson with parameter λ, then:

φX(θ) =

+∞
∑

x=0

eiθx
λx

x!
e−λ = e−λ ee

iθλ = exp(λ(eiθ − 1)) (127)

We turn to independence. If X = (Y, Z) is a 2-dimensional random
variable absolutely continuous, with Y and Z independent, then, writ-
ing θ = (θ1, θ2), we have:

φX(θ1, θ2) =

∫

R2

dydz eiθ1y+θ2z pY (y)pZ(z) = φY (θ1)φZ(θ2) (128)

Naturally the above equality can be trivially extended to d-dimensional
random variables. In particular, if Y and Z are independent, we have:

φY+Z(θ) = φY (θ)φZ(θ) (129)

It is possible to prove that, if the equality:

φX(θ1, θ2) = φY (θ1)φZ(θ2) (130)

holds over the whole R2, then Y and Z are independent.
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VIII. NORMAL LAWS

We have already defined the standard normal law N(0, 1), related to
the density:

p(x) =
1√
2π

exp

(

−x2

2

)

(131)

We have also evaluated the characteristic function of a random variable
X ∼ N(0, 1):

φX(θ) = exp

(

−θ2

2

)

(132)

Moreover, we have presented the law N(µ, σ2), related to the density:

p(x) =
1√
2πσ

exp

(

−(x− µ)2

2σ2

)

(133)

We already know that, if X ∼ N(0, 1), then Y = σX + µ ∼ N(µ, σ2).
The characterictic function of Y can thus be readily evaluated:

φY (θ) = E
[

eiθY
]

= E
[

eiθ(σX+µ)
]

= eiθµφX(σθ) = exp

(

iθµ− σ2θ2

2

)

(134)
and the expected value and the variance are:

E[Y ] = µ, V ar(X) = σ2 (135)

It is useful to extend the definition of a normal law to the d-dimensional
case:

Definizione 27 We say that a d-dimensional random variableX is nor-
mal if its characteristic function has the form:

φX(θ) = exp

(

iθ · µ− 1

2
θ · Cθ

)

(136)

where µ ∈ R
d and C is a symmetric, positive semidefinite real d×d-

matrix. We will write X ∼ N(µ, C).

From linear algebra we learn that, whenever C is a a symmetric,

positive semidefinite real d×d-matrix, there exists a symmetric real
d× d-matrix A such that:

A2 = C (137)

Now, if Z = (Z1, . . . , Zd) is a random variable such that Zi ∼ N(0, 1),
i = 1, . . . , d and the Zi are indipendent, we have:

φZ(θ) =
d
∏

i=1

exp

(

−θ2i
2

)

= exp

(

−|θ|2
2

)

(138)
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Let’s define:

X = AZ + µ (139)

We have:

φX(θ) = E[eiθ·X ] = eiθ·µ φZ(AT θ) = exp

(

iθ · µ− 1

2
θ · Cθ

)

(140)

where we have used the fact that A is symmetric and that A2 = C.
We have thus shown that, for any choice of the vector µ ∈ Rd and of the
real, symmetric and positive semidefinite matrix C, there exists a random
variable X ∼ N(µ, C). Now, the random variable Z has density:

pZ(z) =
1

(2π)d/2
exp

(

−|z|2
2

)

(141)

and it is straightforward to check that:

E[Zi] = 0, Cov(ZiZj) = δij (142)

Hence follows that:

E[Xi] =
d
∑

j=1

AijE[Zj] + µi = µi (143)

e:

Cov(XiXj) = E[(Xi − µi)(Xj − µj)] = (144)

= E
[

(
∑d

k=1AikZk)(
∑d

l=1AjlZl)
]

=
∑d

k,l=1AikAjlδkl =

= Cij

where we have used the symmetry of A.
If C is invertible, and thus positive definite, than also A is positive

definite and X has density which is given by:

pX(x) =
1

| det(A)|pZ(A
−1(x− µ)) (145)

that is:

pX(x) =
1

(2π)d/2
√

det(C)
exp

(

−1

2

d
∑

i,j=1

(xi − µi)C−1
ij (xj − µj)

)

(146)

We conclude this paragraph with some important observations about
normal laws. The first is that linear-affine transformations map normal
random variables into normal random variables. In fact, if X ∼ N(µ, C)
and Y = BX + d we have:
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φY (θ) = E[exp(iθ · Y )] = exp(iθ · d)φX(
TBθ) = (147)

= exp(iθ · d) exp
(

i(TB)θ · µ− 1
2
(TB)θ · C(TB)θ

)

=

= exp(iθ · (d+ Bµ)− 1
2
(TB)θ · C(TB)θ) =

= exp(iθ · (d+ Bµ)− 1
2
θ · (B C (TB))θ)

that is Y ∼ N
(

d+ Bµ,B C (TB)
)

.
We consider now a real random variable of the form Y = a · X =

∑d
i=1 aiXi, where a ∈ Rd is a vector. The following calculation:

φY (θ) = E[exp(iθY )] = E[exp(θa · Y )] = φX(θa) = (148)

= exp
(

iθa · µ− θ2

2
a · Ca

)

show that Y ∼ N
(

a · µ, a · Ca
)

. In particular the components of a normal
are normal.

Another important observation concerns independence and non cor-
relation. If X1, . . . , Xn are indipendent real random variables, Xi ∼
N(µi, σ

2
i ), then X = (X1, . . . , Xn) is normal, X ∼ N(µ, C) with Cij =

σ2
i δij , as one can trivially check writing the characteristic function. On

the other hand, if X = (X1, . . . , Xn) is normal, X ∼ N(µ, C), with di-

agonal covariance matrix Cij = σ2
i δij , then X1, . . . , Xn are indipendent

real random variables, Xi ∼ N(µi, σ
2
i ), since the characteristic function

is factorized. Thus, if the joint law is normal, independence and non
correlation are equivalent properties.

IX. THE LAW OF LARGE NUMBERS AND THE CENTRAL

LIMIT THEOREM

We conclude our review of probability theory with two very important
results about convergence and approximation.

Before introducing such theorems, we will sketch basic notions about
the convergence of random variables. Let’s consider a sequence of d-
dimensional random variables {Xn}∞n=0 and a d-dimensional “limit” ran-
dom variable X .

Definizione 28 1. We say that {Xn}∞n=0 converges almost surely

to X if there exists an event N ∈ F , P (N) = 0, such that:

lim
n→∞

Xn(ω) = X(ω), ∀ω ∈ NC (149)

2. We say that {Xn}∞n=0 converges in probability to X if, for all
η > 0:

lim
n→∞

P (|Xn −X| ≥ η) = 0 (150)
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3. We say that {Xn}∞n=0 converges in distribution to X if:

lim
n→∞

φXn
(θ) = φX(θ) (151)

where φXn
(θ) and φX(θ) are the characteristic functions of Xn and

X respectively.

It can be shown that almost surely convergence implies convergence in
probability, and convergence in probability implies convergence in distri-
bution, which is the weakest notion of convergence.

Let now {Xk}k≥1 be a sequence of real valued random variables, in-
dependent and identically distributed: this means that all the Xk

have the same law. We also assume that all the Xk are square-integrable,
and we introduce the notation:

µ = E[Xk], σ2 = V ar(Xk) (152)

µ and σ2 are finite by contruction, and do not depend on k because we
have assumed the random variables identically distributed. Let’s define
the empirical mean:

Sn =
1

n

n
∑

k=1

Xn (153)

We perform now some calculations:

E[Sn] =
1

n

n
∑

k=1

E[Xn] = µ , (154)

V ar(Sn) = E[(Sn − µ)2] = E[S2
n]− µ2 = (155)

= 1
n2

∑n
i,j=1E[XiXj ]− µ2 =

= 1
n2

∑n
i=1E[X2

i ] +
1
n2

∑n
i 6=j=1E[XiXj ]− µ2 =

= 1
n2

∑n
i=1 (V ar(Xi) + E[Xi]

2) + 1
n2

∑n
i 6=j=1E[Xi]E[Xj ]− µ2 =

= σ2

n
+ µ2

n
+ n(n−1)

n2 µ2 − µ2 = σ2

n

We use now the Chebyshev inequality:

P (|Sn − µ| ≥ η) ≤ V ar(Sn)

η2
=

σ2

nη2
n→+∞→ 0 (156)

We have proved in this way a very important result:

Teorema 29 (Weak law of large numbers) The sequence of empiri-
cal means {Sn}n≥1 of independent and indentically distributed real square-
integrable random variables {Xk}k≥1 with expected value µ, converges
in probability to µ:

lim
n→+∞

P (|Sn − µ| ≥ η) = 0, ∀η > 0 (157)
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Nota 30 It can be shown that this convergence result can be proved also
under weakened ipothesis, removing the assumption of finite variance,
and with a stronger notion of convergence:

Teorema 31 (Strong law of large numbers) The sequence of em-
pirical means {Sn}n≥1 of independent and indentically distributed real
integrable random variables {Xk}k≥1 with expected value µ, converges
almost surely to µ.

We omit the proof of such result.

Now, let’s introduce:

S⋆
n =

Sn − µ

σ/
√
n

(158)

We may write:

S⋆
n =

1√
n

n
∑

k=1

Yk, Yk =
Xk − µ

σ
(159)

where the random variables Yk are clearly independent and identically
distributed, and satisfy:

E[Yk] = 0, V ar(Yk) = 1 (160)

Nota 32 We observe that the expression:

S⋆
n =

Y1√
n
+ · · ·+ Yn√

n
(161)

suggests the idea of a sum of many small independent non systematic
(zero mean) effects. This could remind the reader the theory of errors
which he/she has learned in university courses.

Since the Yk are identically distributed, they have the same characteristic
function, which we will denote simply φ. We evaluate now the charac-
teristic function of S⋆

n:

φS⋆
n
(θ) = E[exp(iθS⋆

n)] = E[exp(iθ 1√
n

∑n
k=1 Yk)] = (162)

=
(

φ( θ√
n
)
)n

= exp
(

n log(φ( θ√
n
))
)

= exp
(

n log
(

1 + φ( θ√
n
)− 1

))

Since the characteristic functions are always continuous, we have
φ( θ√

n
) → φ(0) = 1 if n → +∞ for any fixed θ; this implies the asymptotic

behavior:

n log

(

1 + φ(
θ√
n
)− 1

)

n→+∞∼ n

(

φ(
θ√
n
)− 1

)

(163)

The Yk are by construction square-integrable, and thus:

dφ(0)

dθ
= iE[Yk] = 0,

d2φ(0)

dθ2
= −V ar(Yk) = −1 (164)
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so that:

φ(
θ√
n
)− 1 = − θ2

2n
+ o(

1

n
) (165)

which implies:

n log

(

1 + φ(
θ√
n
)− 1

)

n→+∞∼ n

(

φ(
θ√
n
)− 1

)

n→+∞∼ −θ2

2
(166)

We have thus found the following very important result:

lim
n→+∞

φS⋆
n
(θ) = exp

(

−θ2

2

)

(167)

where in the right hand side we have the characteristic function of a
standard normal random variable Z ∼ N(0, 1).

We summarize what we have found in the following:

Teorema 33 (Central Limit Theorem) If {Xk}k≥1 is a sequence of
real valued square integrable random variables, independent and iden-

tically distributed, letting µ = E[Xk] and σ2 = V ar(Xk), the sequence:

S⋆
n =

1
n

∑n
k=1Xk − µ

σ/
√
n

(168)

converges in distribution to a standard normal random variable Z ∼
N(0, 1).

We use the notation:

S⋆
n

D→ Z ∼ N(0, 1), n → +∞ (169)

where the arrow indicate convergence in distribution.
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