Collective excitations of exotic neutron-rich nuclei

Supported by the BMBF under contract no 05P12RDFN8

Neutron-proton asymmetric nuclei

Appearance of a neutron skin in neutron-rich nuclei

Relativistic (NL) and non-relativistic (Skyrme Sk, SL) mean-field calculations P.G. Reinhard, priv. comm.

Interaction cross section measurement (GSI) plus Isotope shift measurements (ISOLDE) T. Suzuki et al., Phys. Rev. Lett. 75 (1995) 3241

<u>Other experimental techniques:</u> IV GDR (isoscalar probe), Spin-dipole resonance (rel. n-skin), **Pygmy dipole, Polarizability**, anti-proton scattering, e- plus p elastic scattering

Can we learn something on neutron matter?

Supernova explosion

Neutron Star

The nuclear equation of state:

dependence on n-p asymmetry and density

symmetry energy and its density dependence close to saturation density

 \rightarrow properties of n-rich nuclei ?

symmetry energy at higher densities

 \rightarrow reactions with n-rich nuclei ?

Symmetry energy $S_2(\rho)$ and neutron skin in ²⁰⁸Pb

Astrophysical implications: r-process

The challenge: For the understanding of nucleosynthesis and stellar dynamics we need to know properties of many **exotic** nuclei.

Nuclear input: half lives, masses, reaction rates

Astrophysical implications: r-process

The collective response of the nucleus: Giant Resonances

Electric giant resonances

The collective response of the nucleus: Giant Resonances

2^{new collective soft}

Electric giant resonances

	Isoscalar	Isovector	 dipole mode
		-	(Pygmy resonance)
Monopole (GMR)			Prediction: RMF (N. Paar et al.)
Dipole (GDR)			$\sum_{i=1}^{n} \sum_{i=1}^{n} \frac{132 \text{Sn}}{4}$ $\sum_{i=1}^{n} \frac{1}{20} \frac{1}{30}$ $E [MeV]$
Quadrupole (GQR)			

The Pygmy Dipole Resonance (PDR) Relativistic mean-field theory

RQTBA dipole transition densities in ⁶⁸Ni at 10.3 MeV

Previous measurements with radioactive beams

Production of fast exotic nuclei

Electromagnetic excitation at high energies

Determination of 'photon energy' (excitation energy) via a kinematically complete measurement of the momenta of all outgoing particles (invariant mass)

The LAND reaction setup @GSI

Analysis of ⁶⁸Ni: decay after Coulomb excitation

Dipole strength distribution of ⁶⁸Ni

Simultaneous fit of spectra with 8 individual energy bins as free fit parameters: "deconvolution"

_n [MeV]

4

4

New measurements with stable nuclei: Experimental approach

- Real-photon scattering at NEPTUN (quasi-monoenergetic photons)
- > Measure (γ, n) , (γ, γ_0) , $(\gamma, \gamma_i \gamma_k)$ cross sections in one experiment for E_{γ} **above** and **below** S_n

Proposed experimental programme

Next-generation experiments – Goals:

- extraction of full dipole strength function (below and above threshold, extracting E2 contribution, γ (-cacade) and neutron channels)
- development of strength with neutron excess
- relation to symmetry energy
- characteristic of low-lying strength (isospin structure, decay properties)

N=82 isotones

Sm 144

Symmetry energy and dipole response

S. Typel and B.A. Brown, Phys. Rev. C **64** (2001) 027302

> n-skin from Pygmy strength n-skin from polarizability

A. Klimkiewicz et al., PRC 76 (2007) 051603(R)
A. Carbone et al., PRC 81 (2010) 041301(R)
P.-G. Reinhard, W. Nazarewicz, PRC 81 (2010) 051303(R)
A. Tamii et al., Phys. Rev. Lett. 107 (2011) 062502.

Polarizability and neutron skin

Theoretical calculations from J. Piekarewicz, PRC 83, 034319 (2011)

Neutron skin in ²⁰⁸Pb from different methods

Measurement of the dipole polarizability of the unstable neutron-rich nucleus ⁶⁸Ni

D.M. Rossi,^{1, 2, *} P. Adrich,¹ F. Aksouh,^{1, †} H. Alvarez-Pol,³ T. Aumann,^{4, 1, ‡} J. Benlliure,³ M. Böhmer,⁵ K. Boretzky,¹ E. Casarejos,⁶ M. Chartier,⁷ A. Chatillon,¹ D. Cortina-Gil,³ U. Datta Pramanik,⁸ H. Emling,¹ O. Ershova,⁹ B. Fernandez-Dominguez,^{3,7} H. Geissel,¹ M. Gorska,¹ M. Heil,¹ H.T. Johansson,^{10,1} A. Junghans,¹¹ A. Kelic-Heil,¹ O. Kiselev,^{1,2} A. Klimkiewicz,^{1,12} J.V. Kratz,² R. Krücken,⁵ N. Kurz,¹ M. Labiche,^{13,14} T. Le Bleis,^{1,9,15} R. Lemmon,¹⁴ Yu.A. Litvinov,¹ K. Mahata,^{1,16} P. Maierbeck,⁵ A. Movsesyan,⁴ T. Nilsson,¹⁰ C. Nociforo,¹ R. Palit,¹⁷ S. Paschalis,^{4,7} R. Plag,^{9,1} R. Reifarth,^{9,1} D. Savran,^{18,19} H. Scheit,⁴ H. Simon,¹ K. Sümmerer,¹ A. Wagner,¹¹ W. Waluś,¹² H. Weick,¹ and M. Winkler¹ ¹GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany ²Institut für Kernchemie, Johannes Gutenberg-Universität, D-55128 Mainz, Germany ³University of Santiago de Compostela, E-15705 Santiago de Compostela, Spain ⁴Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany ⁵Physik-Department E12, Technische Universität München, D-85748 Garching, Germany ⁶University of Vigo, E-36310 Vigo, Spain ⁷University of Liverpool, Liverpool L69 7ZE, United Kingdom ⁸Saha Institute of Nuclear Physics, Kolkata 700-064, India ⁹Institut für Angewandte Physik, Goethe Universität, D-60438 Frankfurt am Main, Germany ¹⁰Chalmers University of Technology, SE-41296 Göteborg, Sweden ¹¹Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden, Germany ¹² Jagiellonian University, PL-30-059 Krakow, Poland ¹³University of the West of Scotland, Paisley PA1 2BE, United Kingdom ¹⁴STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom ¹⁵Institut Pluridisciplinaire Hubert Curien, F-67037 Strasbourg, France ¹⁶Bhabha Atomic Research Centre, Mumbai 400-085, India ¹⁷ Tata Institute of Fundamental Research, Mumbai 400-005, India ¹⁸ExtreMe Matter Institute EMMI and Research Division. GSI Helmholtzzentrum für Schwerionenforschung GmbH. D-64291 Darmstadt. Germany ¹⁹Frankfurt Institute for Advanced Studies, D-60438 Frankfurt am Main, Germany

Summary

- Dipole response of n-rich nuclei Pygmy Resonance
 - Low-lying dipole strength observed in n-rich nuclei, 'proton-Pygmy' in $^{32}\mathrm{Ar}$
 - many open questions next-generation experimental program planned at GSI, RIKEN, SDALINAC, HIγS, Osaka, ...
 - systematics, strength and position as a function of N-Z (and mass)
 - isospin character (isoscalar dipole)
 - decay properties
 - relation to nuclear-matter properties
 - relation to observed low-lying strength for stable nuclei
 - extraction of quadrupole strength
- Dipole response of ⁶⁸Ni
 - 25(2)% non-statistical decay
 - PDR: 2.8(5)% EWSR, 7(2)% direct gamma decay
 - Dipole polarizability extracted for the first time for a radioactive nucleus

This opens the possibility for systematic studies as a function of N-Z which will enable to provide tight constraints on neutron skins and the density dependence of the symmetry energy

Facility for Anti-Proton and Ion Research FAIR

TECHN UNIVE DARM

Facility for Anti-Proton and Ion Research FAIR

UNIVERSI DARMSTA

High-energy radioactive beams at FAIR

Production of radioactive beams by fragmentation and fission

Martin Winkler

Superconducting Fragment Separator Super-FRS

 \rightarrow High transmission for fission fragment (<u>intensity gain by a factor of ~10</u>)

RIB intensities after Super-FRS

Reactions with Relativistic Radioactive Beams

